Map_thumbnail_large_font

Porites harrisoni

Status_ne_offStatus_dd_offStatus_lc_offStatus_nt_onStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
ANIMALIA CNIDARIA ANTHOZOA SCLERACTINIA PORITIDAE

Scientific Name: Porites harrisoni
Species Authority: Veron 2002

Assessment Information [top]

Red List Category & Criteria: Near Threatened ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor/s: Sheppard, A., Fenner, D., Edwards, A., Abrar, M. & Ochavillo, D.
Reviewer/s: Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
This species is has a limited range and is common within its range. It can survive sedimentation and has low susceptibility to bleaching, but it is particularly susceptible to disease and harvesting for aquarium trade, and extensive reduction of coral reef habitat due to a combination of threats. Specific population trends are unknown, but population reduction can be inferred from declines in habitat quality based on the combined estimates of both destroyed reefs and reefs at the critical stage of degradation within its range (Wilkinson 2004). Its threat susceptibility increases the likelihood of being lost within one generation in the future from reefs at a critical stage. Therefore, the estimated habitat degradation and loss of 23% over three generation lengths (30 years) is the best inference of population reduction. This does not meet the threshold of a threat category, however due to the low resistance to disease and this species is Near Threatened. Because of predicted threats from climate change and ocean acidification it will be important to reassess this species in 10 years or sooner, particularly if the species is also observed to disappear from reefs currently at the critical stage of reef degradation.

Geographic Range [top]

Range Description: This species is found in the Red Sea and the Gulf of Aden, the Arabian Sea and the Persian Gulf.

The northern Red Sea from Rabigh to the Sinai Peninsula escaped most of the bleaching and the mortality of the last couple of decades. Destroyed and critical reefs are only 6% of the total (Wilkinson 2004) because of its high latitude and very deep water extending close to shore, and wind induced upwelling. If these factors continue they are likely to contribute to survival of northern Red Sea species into the future. The southern Red Sea did not escape recent bleaching events and the Gulf of Aqaba and the Hurghada regions are affected by numerous direct impacts from coastal development and industry.

Genetics studies have, however, demonstrated the wide degree of differentiation of Red Sea populations from other Indian Ocean and Indo-West Pacific populations, consistent with a low level of gene exchange between the Red Sea and elsewhere. This relative isolation means that recovery following regional scale disturbance that decimates populations in the Red Sea may be compromised. For Red Sea endemics such disturbances would prove catastrophic.
Countries:
Native:
Bahrain; Djibouti; Egypt; Eritrea; Iran, Islamic Republic of; Iraq; Israel; Jordan; Kuwait; Oman; Pakistan; Qatar; Saudi Arabia; Somalia; Sudan; United Arab Emirates; Yemen
FAO Marine Fishing Areas:
Native:
Indian Ocean – western
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: This species is locally common and may be a dominant species.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is particularly susceptible to bleaching, disease, and other threats and therefore population decline is based on both the percentage of destroyed reefs and critical reefs that are likely to be destroyed within 20 years (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on population decline and generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Population Trend: Stable

Habitat and Ecology [top]

Habitat and Ecology: This species is found in shallow fringing reefs, generally to depths of 15 m. It prefers areas of low exposure, and tolerates sedimented conditions well (Sheppard and Sheppard 1991).
Systems: Marine

Threats [top]

Major Threat(s): Porites species are heavily collected for the aquarium trade.

The genus is not particularly susceptible to bleaching, in the Persian Gulf this species survived the 1998 warming event well, but is more prone to disease than many other corals. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by a number of localized threats. Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: All corals are listed on CITES Appendix II. Parts of this species distribution fall within several Marine Protected Areas within its range.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Having timely access to national-level trade data for CITES analysis reports would be valuable for monitoring trends this species. The species is targeted by collectors for the aquarium trade and fisheries management is required for the species, e.g., Marine Protected Areas, quotas, size limits, etc. Consideration of the suitability of species for aquaria should also be included as part of fisheries management, and population surveys should be carried out to monitor the effects of harvesting.
Citation: Sheppard, A., Fenner, D., Edwards, A., Abrar, M. & Ochavillo, D. 2008. Porites harrisoni. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <www.iucnredlist.org>. Downloaded on 20 April 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please fill in the feedback form so that we can correct or extend the information provided