
 

 

1 

 

 

 

 
Great Hammerhead (Sphyrna mokarran) 
 
 
Supplementary Information for Sphyrna mokarran 
 
Rigby, C.L., Dulvy, N.K., Carlson, J., Fernando, D., Fordham, S., Jabado, R.W., Liu, K.M., 
Marshall, A., Pacoureau, N., Romanov, E., Sherley, R.B. & Winker, H. 

 
To analyse the Sphyrna mokarran population trend data, we used a Bayesian state-space 
tool for trend analysis of abundance indices for IUCN Red List assessment (Just Another 
Red List Assessment, JARA), which builds on the Bayesian state-space tool for averaging 
relative abundance indices by Winker et al. (2018). The relative abundance or the population 

follows an exponential state-space population model of the form: , where  is 

the logarithm of the expected abundance in year t, and  is the normally distributed annual 

rate of change with mean , the estimable mean rate of change for a population, and 

process variance . We linked the logarithm of the observed relative abundance for 

index  (where multiple datasets were available for the same fishery or region) to the 

expected abundance trend using the observation equation (eqn. 16) from 

Winker et al. (2018). We used a non-informative normal prior for . Priors for 

the process variance can be either fixed or estimated (see Winker et al. 2018 for details). If 

estimated (default), the priors were , or approximately uniform on 

the log scale (e.g. Chaloupka and Balazs 2007). Three Monte Carlo Markov chains were run 
and initiated by assuming a prior distribution on the initial state centred around the first data 

point in each abundance time series ( ), . The first 20,000 

iterations were discarded as burn-in, and of the remaining 200,000 iterations, 100,000 were 
selected for posterior inference. Thus, posterior distributions were estimated from 300,000 
iterations. Analyses were performed using the R Statistical Software v3.5.0 (R Core Team 
2018), via the interface from R (‘r2jags’ library v 0.5-7; Su and Yajima 2015) to JAGS (‘Just 
Another Gibbs Sampler’ v4.3.0; Plummer 2003). Convergence was diagnosed using 
Geweke’s diagnostic (Geweke 1992) with thresholds of p = 0.05, via the ‘coda’ library 
(v0.19-1; Plummer et al. 2006). 
 
The percentage change D% was directly calculated from the posteriors of the estimated 

population time series If the span of  was longer than 3 x generation length (GL), the 

percentage change was automatically calculated as the difference between a three-year 
average around the final observed data point T, and a three-year average around the year 
corresponding to T−(3 × GL). The year T+1 is always projected to obtain a three-year 
average around T. We used a three-year average to reduce the influence of short-term 

fluctuation (Froese et al. 2017). If the span of  was shorter than 3 × GL, JARA projected 

forward, by passing the number of desired future years without observations to the model, to 

attain an  that spans 3 × GL + 2 years for the calculation of D%. These projections (shown 

as red dashed lines in the figures below) were based on the posteriors of the estimated 

population reduction across all n years in the observed time series: .The 

projection gives similar results to extrapolating backwards to attain a 3 x GL period and 
produces a similar result for the D%. 
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We analysed the time series for each region where data were available, to produce a) a 

model fit to the observed data (e.g. Figure 1A), b) an annual rate of change (  based on the 

observed data ( , expressed as a % in e.g. Figure 1B), c) if needed, projected 

values for each year necessary to extend the time-series to 3 × GL (e.g. Figure 1C), and d) 
the posterior distribution for the regional rate of change (%) over 3 × GL (e.g. Figure 1D). 
Because the posterior distribution comprises an estimated % population change over 3 × GL 
for each model iteration, these automatically map to the IUCN Red List categories. For 
example, under criterion A2, an iteration yielding a % population change of +55% would be 
assigned to the Least Concern category, while iterations giving −82% and −55% would be 
assigned to Critically Endangered and Endangered, respectively. By assigning the posterior 
decline from each iteration in this way, it was possible to determine the most likely IUCN 
Red List category for each region separately (Table 1). 
 
We then assessed the species globally (e.g. Figure 4) by calculating the expected rate of 
change (%) using the posterior probabilities for each of the regional rates of change 
weighted by an area-based estimate of the size of each region as a proportion of the 
species’ global distribution. The current distribution map was used to calculate areas (Ebert 
et al. 2013). For any region where the species is known to occur, we sub-sampled (without 
replacement) from the posterior probability distribution for the regional rate of population 
reduction according to the proportion of the total area of a species’ distribution that fell within 
that region. Where a species is known to occur in a region, but no regional trend data were 

available, we sampled from a uniform distribution,  with the sample size 

determined by the proportion of the total area of the species’ distribution that is contained 
within those regions.
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Table 1. Sphyrna mokarran – Population change (%) and posterior probabilities for 
changes falling within the IUCN Red List categories Least Concern (LC), Near Threatened 
(NT), Vulnerable (VU), Endangered (EN), and Critically Endangered (CR); the “likely status” 
based on criteria A2–4 is assigned based on the category containing the highest posterior 
probability, with the exception that VU is also selected where LC obtained the highest 
probability, but it is < 50%. All probabilistic statements are based on the rate of change over 
three generation lengths (GL) from projections within JARA. The Global change is based on 
weighting the regional posterior probabilities by the proportional area (PA) weighting (see 
text for detail).  

 

Data sources: 

1. Jiao et al. 2011: Figure 4M2, page 2702; 

2. J. Carlson unpubl. data; 

3. Dudley & Simpfendorfer 2006: Figure 2, page 231. 

 

 

Region 
GL 

(years) 

Data 
length 
(years) 

PA 

weighting 

Median 
change LC NT VU EN CR 

Likely 
Status 

N. Atlantic 11 24.8 25 0.27 −29.1 43.0 7.8 18.7 26.8 3.8 VU 

N. Atlantic 22 24.8 24 0.27 +366 100 0 0 0 0 LC 

S. Atlantic No trend data 0.05 – – – – – – – 

N. Pacific No trend data 0.24 – – – – – – – 

S. Pacific No trend data 0.16 – – – – – – – 

Indian3 23.7 26 0.28 −99.3 0 0 0 0 100 CR 

Global 1 – – – –62.4 20.5 6.6 14.0 20.8 38.1 CR 

Global 2 – – – –50.9 36.0 4.5 9.1 13.5 36.9 CR 
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North Atlantic 1: Stock Assessment (1981–2005), Northwest Atlantic and Gulf of 
Mexico, relative abundance (numbers of sharks) (Jiao et al. 2011) 
 
a)

 
c)

 
 
 

 
 
 
 
 

b)

 
 
 
 
d) 

 
 

Figure 1. JARA results for Great Hammerhead (Sphyrna mokarran) in the north Atlantic 
showing (a) the JARA fit to the observed time-series, (b) the posterior probability for the 
percentage annual population change calculated from all the observed data (in black) and 
from the last 1 generation length (in blue), with the mean (solid lines) shown relative to a 
stable population (% change = 0, black dashed line), (c) the observed (black line) and 
predicted (red line) population trajectory over three generations (74.4 years, dashed grey 
lines) and (d) the median reduction over three generation lengths (dashed line) and 
corresponding probabilities for rates of population reduction falling within the IUCN Red List 
categories. 
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North Atlantic 2: NOAA CPUE data (1994–2017), Western North Atlantic and Gulf of Mexico, 

relative abundance (numbers of sharks per 100 hooks and per 1000 hooks).

a)

 
c)

 
 

b) 

 
d) 

 
 

Figure 2. JARA results for Great Hammerhead (Sphyrna mokarran) in the north Atlantic 
showing (a) the JARA fit to the observed time-series, (b) the posterior probability for the 
percentage annual population change calculated from all the observed data (in black), with 
the mean (solid lines) shown relative to a stable population (% change = 0, black dashed 
line), (c) the observed (black line) and predicted (red line) population trajectory over three 
generations (74.4 years, dashed grey lines) and (d) the median reduction over three 
generation lengths (dashed line) and corresponding probabilities for rates of population 

reduction falling within the IUCN Red List categories. 
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Indian: CPUE (1978–2003), South Africa, gillnet (number per km net year) 

a)

 
c)

 
 

b) 

 
d) 

 
  

 

 

Figure 3. JARA results for Great Hammerhead (Sphyrna mokarran) in the Indian Ocean 
showing (a) the JARA fit to the observed time-series, (b) the posterior probability for the 
percentage annual population change calculated from all the observed data (in black), with 
the mean (solid lines) shown relative to a stable population (% change = 0, black dashed 
line), (c) the observed (black line) and predicted (red line) population trajectory over three 
generations (71.1 years, dashed grey lines) and (d) the median reduction over three 
generation lengths (dashed line) and corresponding probabilities for rates of population 
reduction falling within the IUCN Red List categories.
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Global weighted trend 1 (using North Atlantic 1 and Indian 
 
Median (95% CI) change = −62.4% (−99.8–73.0%). 
 

 

Figure 4. Global weighted trend for Sphyrna mokarran based on weighting the regional 

posterior probabilities for the rates of population reduction over three generations by the 

relative area of each region as a proportion of the species’ global distribution. A uniform 

distribution U(−100,0) was applied for each region in which the species occurs but no trend 

data were available. 
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Global weighted trend 2 (using North Atlantic 2 and Indian): 
 
 
Median (95% CI) change = −50.9% (−99.8–655.1%). 
 
 

 

Figure 5. Global weighted trend for Sphyrna mokarran based on weighting the regional 
posterior probabilities for the rates of population reduction over three generations by the 
relative area of each region as a proportion of the species’ global distribution. A uniform 
distribution U(−100,0) was applied for each region in which the species occurs but no trend 
data were available. 
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