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To analyse the Prionace glauca population trend data, we used a Bayesian state-space tool 
for trend analysis of abundance indices for IUCN Red List assessment (Just Another Red 
List Assessment, JARA), which builds on the Bayesian state-space tool for averaging 
relative abundance indices by Winker et al. (2018). The relative abundance or the population 

follows an exponential state-space population model of the form: , where  is 

the logarithm of the expected abundance in year t, and  is the normally distributed annual 

rate of change with mean , the estimable mean rate of change for a population, and 

process variance . We linked the logarithm of the observed relative abundance for 

index  (where multiple datasets were available for the same fishery or region) to the 

expected abundance trend using the observation equation (eqn. 16) from 

Winker et al. (2018). We used a non-informative normal prior for . Priors for 

the process variance can be either fixed or estimated (see Winker et al. 2018 for details). If 

estimated (default), the priors were , or approximately uniform on 

the log scale (e.g. Chaloupka and Balazs 2007). Three Monte Carlo Markov chains were run 
and initiated by assuming a prior distribution on the initial state centred around the first data 

point in each abundance time series ( ), . The first 20,000 

iterations were discarded as burn-in, and of the remaining 200,000 iterations, 100,000 were 
selected for posterior inference. Thus, posterior distributions were estimated from 300,000 
iterations. Analyses were performed using the R Statistical Software v3.5.0 (R Core Team 
2018), via the interface from R (‘r2jags’ library v 0.5-7; Su and Yajima 2015) to JAGS (‘Just 
Another Gibbs Sampler’ v4.3.0; Plummer 2003). Convergence was diagnosed using 
Geweke’s diagnostic (Geweke 1992) with thresholds of p = 0.05, via the ‘coda’ library 
(v0.19-1; Plummer et al. 2006). 
 
The percentage change D% was directly calculated from the posteriors of the estimated 

population time series If the span of  was longer than 3 x generation length (GL), the 

percentage change was automatically calculated as the difference between a three-year 
average around the final observed data point T, and a three-year average around the year 
corresponding to T−(3 × GL). The year T+1 is always projected to obtain a three-year 
average around T. We used a three-year average to reduce the influence of short-term 

fluctuation (Froese et al. 2017). If the span of  was shorter than 3 × GL, JARA projected 

forward, by passing the number of desired future years without observations to the model, to 

attain an  that spans 3 × GL + 2 years for the calculation of D%. These projections (shown 

as red dashed lines in the figures below) were based on the posteriors of the estimated 

population reduction across all n years in the observed time series: .The 

projection gives similar results to extrapolating backwards to attain a 3 x GL period and 
produces a similar result for the D%. 
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We analysed the time series for each region where data were available, to produce a) a 

model fit to the observed data (e.g. Figure 1a), b) an annual rate of change (  based on the 

observed data ( , expressed as a % in e.g. Figure 1b), c) if needed, projected 

values for each year necessary to extend the time-series to 3 × GL (e.g. Figure 1c), and d) 
the posterior distribution for the regional rate of change (%) over 3 × GL (e.g. Figure 1d). 
Because the posterior distribution comprises an estimated % population change over 3 × GL 
for each model iteration, these automatically map to the IUCN Red List categories. For 
example, under criterion A2, an iteration yielding a % population change of +55% would be 
assigned to the Least Concern category, while iterations giving −82% and −55% would be 
assigned to Critically Endangered and Endangered, respectively. By assigning the posterior 
reduction from each iteration in this way, it was possible to determine the most likely IUCN 
Red List category for each region separately (Table 1). 
 
 
We then assessed the species globally (e.g. Figure 6) by calculating the expected rate of 
change (%) using the posterior probabilities for each of the regional rates of change 
weighted by an area-based estimate of the size of each region as a proportion of the 
species’ global distribution. The current distribution map was used to calculate areas (Ebert 
et al. 2013). For any region where the species is known to occur, we sub-sampled (without 
replacement) from the posterior probability distribution for the regional rate of population 
reduction according to the proportion of the total area of a species’ distribution that fell within 
that region. Where a species is known to occur in a region, but no regional trend data were 

available, we sampled from a uniform distribution,  with the sample size 

determined by the proportion of the total area of the species’ distribution that is contained 
within those regions. 
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Table 1. Prionace glauca – Population change (%) and posterior probabilities for changes 
falling within the IUCN Red List categories Least Concern (LC), Near Threatened (NT), 
Vulnerable (VU), Endangered (EN), and Critically Endangered (CR); the “likely status” based 
on criteria A2–4 is assigned based on the category containing the highest posterior 
probability, with the exception that VU is also selected where LC obtained the highest 
probability, but it is <50%. All probabilistic statements are based on the rate of change over 
three generation lengths (GL) from projections within JARA. The Global change is based on 
weighting the regional posterior probabilities by the proportional area (PA) weighting (see 
text for detail). 

 

Data sources: 

1. ICCAT 2015: Figure 14, stock synthesis model, page 35; 

2. Carvalho and Winker 2015: Figure 13, Bayesian state-space production model, page 24; 

3. ISC Working Group 2017: Figure 4Eb, fully-integrated size-structured model, page 10; 

4. Takeuchi et al. 2016: Figure 20, length-based age-structured model, page 51; 

5.  Rice 2017: Figure 11, stock synthesis model, page 29. 

Region 
GL 

(years) 

Data 
length 
(years) 

PA 

weighting 

Median 
change LC NT VU EN CR 

Likely 
Status 

N. Atlantic1 10 43 0.15 −53.9 0.1 1.0 31.4 67.4 0 EN 

S. Atlantic2 10 43 0.11 −38.2 4.0 15.1 74.6 6.3 0 VU 

N. Pacific3 10.5 45 0.27 +8.5 97.7 2.1 0.3 0 0 LC 

S. Pacific4 10.5 21 0.28 +5.7 81.0 9.2 8.8 1.0 0 LC 

Indian5 10.5 68 0.19 −8.4 89.5 9.6 0.9 0 0 LC 

Global – – – −7.3 66.4 6.9 15.7 11.1 0 LC 
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North Atlantic: Stock assessment (1971–2013), Spawning biomass (metric tonnes). 
 
a) 

 
c) 

 
 
 

b)

 
d)

 
 

Figure 1. JARA results for Blue Shark (Prionace glauca) in the north Atlantic showing (a) the 

JARA fit to the observed time-series, (b) the posterior probability for the percentage annual 

population change calculated from all the observed data (in black), from the last 1 

generation length (in blue), the last 2 generation lengths (in green), and the last 3 generation 

lengths (in red) with the mean (solid lines) shown relative to a stable population (% change = 

0, black dashed line), (c) the observed (black line) and predicted (red line) population 

trajectory over three generations (30 years, dashed grey lines) and (d) the median reduction 

over three generation lengths (dashed line) and corresponding probabilities for rates of 

population reduction falling within the IUCN Red List categories.
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South Atlantic: Stock Assessment (1971–2013), exploitable biomass (metric tonnes).

a)

 
c)

 
 
 
 

b) 

 
d) 

 
 

Figure 2. JARA results for Blue Shark (Prionace glauca) in the south Atlantic showing (a) 

the JARA fit to the observed time-series, (b) the posterior probability for the percentage 

annual population change calculated from all the observed data (in black). From the last 1 

generation length (in blue), the last 2 generation lengths (in green), and the last 3 generation 

lengths (in red) with the mean (solid lines) shown relative to a stable population (% change = 

0, black dashed line), (c) the observed (black line) and predicted (red line) population 

trajectory over three generations (30 years, dashed grey lines) and (d) the median reduction 

over three generation lengths (dashed line) and corresponding probabilities for rates of 

population reduction falling within the IUCN Red List categories. 
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North Pacific: Stock Assessment (1971–2015), spawning biomass (tonnes). 

a)

 
c) 

 
 
 
 

b) 

 
d) 

 
 

Figure 3. JARA results for Blue Shark (Prionace glauca) in the north Pacific showing (a) the 
JARA fit to the observed time-series, (b) the posterior probability for the percentage annual 
population change calculated from all the observed data (in black), from the last 1 
generation length (in blue), from the last 2 generation lengths (in green), and from the last 3 
generation lengths (in red) with the mean (solid lines) shown relative to a stable population 
(% change = 0, black dashed line), (c) the observed (black line) and predicted (red line) 
population trajectory over three generations (31.5 years, dashed grey lines) and (d) the 
median reduction over three generation lengths (dashed line) and corresponding 
probabilities for rates of population reduction falling within the IUCN Red List categories. 
.
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South Pacific: Stock Assessment (1994–2014), Southwest Pacific, spawning biomass 

(tonnes).

a)

 
c)

 
 
 
 
 

b) 

 
d) 

 
 

Figure 4. JARA results for Blue Shark (Prionace glauca) in the south Pacific showing (a) the 

JARA fit to the observed time-series, (b) the posterior probability for the percentage annual 

population change calculated from all the observed data (in black) and  the last 1 generation 

length (in blue), with the mean (solid lines) shown relative to a stable population (% change 

= 0, black dashed line), (c) the observed (black line) and predicted (red line) population 

trajectory over three generations (31.5 years, dashed grey lines) and (d) the median 

reduction over three generation lengths (dashed line) and corresponding probabilities for 

rates of population reduction falling within the IUCN Red List categories.
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Indian: Stock Assessment (1949–2016), total biomass (metric tonnes).

a)

 
c)

 
 
 
 

b) 

 
d) 

 
 

Figure 5. JARA results for Blue Shark (Prionace glauca) in the Indian ocean 

showing (a) the JARA fit to the observed time-series, (b) the posterior probability for 

the percentage annual population change calculated from all the observed data (in 

black), from the last 1 generation length (in blue), the last 2 generation lengths (in 

green), and the last 3 generation lengths (in red) with the mean (solid lines) shown 

relative to a stable population (% change = 0, black dashed line), (c) the observed 

(black line) and predicted (red line) population trajectory over three generations (31.5 

years, dashed grey lines) and (d) the median reduction over three generation lengths 

(dashed line) and corresponding probabilities for rates of population reduction falling 

within the IUCN Red List categories. 
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Global weighted trend: 

Median (95% CI) change = −7.3% (−61.3–63.5%). 

 

Figure 6. Global weighted trend for Prionace glauca based on weighting the regional 

posterior probabilities for the rates of population reduction over three generations by the 

relative area of each region as a proportion of the species’ global distribution.  
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