White Shark (Carcharodon carcharias)

Supplementary Information for Carcharodon carcharias

Rigby, C.L., Barreto, R., Carlson, J., Fernando, D., Fordham, S., Francis, M.P., Jabado, R.W., Liu, K.M., Marshall, A., Pacoureau, N., Romanov, E., Sherley, R.B. \& Winker, H

To analyse the Carcharodon carcharias population trend data, we used a Bayesian statespace tool for trend analysis of abundance indices for IUCN Red List assessment (Just Another Red List Assessment, JARA), which builds on the Bayesian state-space tool for averaging relative abundance indices by Winker et al. (2018). The relative abundance or the population follows an exponential state-space population model of the form: $\mu_{t+1}=\mu_{t}+r_{t}$, where μ_{t} is the logarithm of the expected abundance in year t, and r_{t} is the normally distributed annual rate of change with mean \bar{r}, the estimable mean rate of change for a population, and process variance σ^{2}. We linked the logarithm of the observed relative abundance $I_{t, i}$ for index i (where multiple datasets were available for the same fishery or region) to the expected abundance trend $\log \left(\hat{l}_{t}\right)=\mu_{t}$ using the observation equation (eqn. 16) from Winker et al. (2018). We used a non-informative normal prior for $\bar{r} \sim N(0,1000)$. Priors for the process variance can be either fixed or estimated (see Winker et al. 2018 for details). If estimated (default), the priors were $\sigma^{2} \sim 1 / \operatorname{gamma}(0.01,0.01)$, or approximately uniform on the log scale (e.g. Chaloupka and Balazs 2007). Three Monte Carlo Markov chains were run and initiated by assuming a prior distribution on the initial state centred around the first data point in each abundance time series $\left(y_{t=1}\right), \mu_{1} \sim N\left(\log \left(y_{1}\right), 1000\right)$. The first 20,000 iterations were discarded as burn-in, and of the remaining 200,000 iterations, 100,000 were selected for posterior inference. Thus, posterior distributions were estimated from 300,000 iterations. Analyses were performed using the R Statistical Software v3.5.0 (R Core Team 2018), via the interface from R ('r2jags' library v 0.5-7; Su and Yajima 2015) to JAGS ('Just Another Gibbs Sampler’ v4.3.0; Plummer 2003). Convergence was diagnosed using Geweke's diagnostic (Geweke 1992) with thresholds of $p=0.05$, via the 'coda' library (v0.19-1; Plummer et al. 2006).

The percentage change $D \%$ was directly calculated from the posteriors of the estimated population time series \hat{I}_{t}. If the span of \hat{I}_{t} was longer than $3 \times$ generation length (GL), the percentage change was automatically calculated as the difference between a three-year average around the final observed data point T, and a three-year average around the year corresponding to $T-(3 \times \mathrm{GL})$. The year $T+1$ is always projected to obtain a three-year average around T. We used a three-year average to reduce the influence of short-term fluctuation (Froese et al. 2017). If the span of \hat{I} was shorter than $3 \times$ GL, JARA projected forward, by passing the number of desired future years without observations to the model, to attain an $\widehat{\hat{I}}_{t}$ that spans $3 \times \mathrm{GL}+2$ years for the calculation of $D \%$. These projections (shown as red dashed lines in the figures below) were based on the posteriors of the estimated population reduction across all n years in the observed time series: $\bar{r}=\frac{1}{n} \sum_{t=1}^{n} r_{t}$. The projection gives similar results to extrapolating backwards to attain a $3 \times$ GL period and produces a similar result for the D\%.

We analysed the time series for each region where data were available, to produce a) a model fit to the observed data (e.g. Figure 1a), b) an annual rate of change (λ) based on the observed data $(\lambda=\exp (\vec{r})$, expressed as a \% in e.g. Figure 1b), c) if needed, projected values for each year necessary to extend the time-series to $3 \times G L$ (e.g. Figure 1c), and d) the posterior distribution for the regional rate of change (\%) over $3 \times \mathrm{GL}$ (e.g. Figure 1d). Because the posterior distribution comprises an estimated \% population change over $3 \times \mathrm{GL}$ for each model iteration, these automatically map to the IUCN Red List categories. For example, under criterion A2, an iteration yielding a \% population change of $+55 \%$ would be assigned to the Least Concern category, while iterations giving -82% and -55% would be assigned to Critically Endangered and Endangered, respectively. By assigning the posterior reduction from each iteration in this way, it was possible to determine the most likely IUCN Red List category for each region separately (Table 1).

We then assessed the species globally (e.g. Figure 5) by calculating the expected rate of change (\%) using the posterior probabilities for each of the regional rates of change weighted by an area-based estimate of the size of each region as a proportion of the species' global distribution. The current distribution map was used to calculate areas (Ebert et al. 2013). For any region where the species is known to occur, we sub-sampled (without replacement) from the posterior probability distribution for the regional rate of population reduction according to the proportion of the total area of a species' distribution that fell within that region. Where a species is known to occur in a region, but no regional trend data were available, we sampled from a uniform distribution, $U(-100,0)$ with the sample size determined by the proportion of the total area of the species' distribution that is contained within those regions.

Table 1. Carcharodon carcharias - Population change (\%) and posterior probabilities for changes falling within the IUCN Red List categories Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN), and Critically Endangered (CR); the "likely status" based on criteria A2-4 is assigned based on the category containing the highest posterior probability, with the exception that VU is also selected where LC obtained the highest probability, but it is $<50 \%$. All probabilistic statements are based on the rate of change over three generation lengths (GL) from projections within JARA. The Global change is based on weighting the regional posterior probabilities by the proportional area (PA) weighting (see text for detail).

Region	GL (years)	Data length (years)	PA weighting	Median change	LC	NT	VU	EN	CR	Likely Status	
N. Atlantic ${ }^{1}$	53	50	0.14	-80.8	7.3	2.1	7.2	31.8	51.7	CR	
S. Atlantic	No trend data	0.11	-	-	-	-	-	-	-		
N. Pacific											
S. Pacific 3	53	31	0.29	+602.1	98.2	0.2	0.4	0.7	0.5	LC	
Indian 4	53	60	0.28	-95.8	0	0	0.1	3.0	96.8	CR	
Global 5	-	-	-	0.18	+13.1	59.0	3.3	7.9	16.3	13.5	LC

Data sources:

1. Curtis et al. 2014: Figure 7, page e99240;
2. Dewar et al. 2013: Figure 4.5, page 63;
3. Reid et al. 2011: Figure 5, page 682;
4. Dudley and Simpfendorfer 2006: Figure 2, page 231, updated with data to 2012 (S. Wintner, pers. comm. 3/10/2018).

North Atlantic: Standardized CPUE (1961-2010), Northwest Atlantic, commercial longline, recreational data, survey data and standardized observer data.

Figure 1: JARA results for Great White Shark (Carcharodon carcharias) in the north Atlantic showing (a) the JARA fit to the observed time-series, (b) the posterior probability for the percentage annual population change calculated from all the observed data (in black), with the mean (solid lines) shown relative to a stable population (\% change $=0$, black dashed line), (c) the observed (black line) and predicted (red line) population trajectory over three generations (159 years, dashed grey lines) and (d) the median reduction over three generation lengths (dashed line) and corresponding probabilities for rates of population reduction falling within the IUCN Red List categories.

North Pacific: CPUE (1980-2010), California U.S.A., gillnet (catch per set).

Figure 2: JARA results for Great White Shark (Carcharodon carcharias) in the north Pacific showing (a) the JARA fit to the observed time-series, (b) the posterior probability for the percentage annual population change calculated from all the observed data (in black), with the mean (solid lines) shown relative to a stable population (\% change $=0$, black dashed line), (c) the observed (black line) and predicted (red line) population trajectory over three generations (159 years, dashed grey lines) and (d) the median reduction over three generation lengths (dashed line) and corresponding probabilities for rates of population reduction falling within the IUCN Red List categories.

South Pacific: CPUE (1950-2009), New South Wales, Australia, bather protection net (catch per 100 net days).

Figure 3: JARA results for Great White Shark (Carcharodon carcharias) in the south Pacific showing (a) the JARA fit to the observed time-series, (b) the posterior probability for the percentage annual population change calculated from all the observed data (in black) and and from the last 1 generation length (in blue) with the mean (solid lines) shown relative to a stable population (\% change $=0$, black dashed line), (c) the observed (black line) and predicted (red line) population trajectory over three generations (159 years, dashed grey lines) and (d) the median reduction over three generation lengths (dashed line) and corresponding probabilities for rates of population reduction falling within the IUCN Red List categories.

Indian: CPUE (1978-2012), South Africa, gillnet (catch per km net year).

Figure 4. JARA results for Great White Shark (Carcharodon carcharias) in the Indian Ocean showing (a) the JARA fit to the observed time-series, (b) the posterior probability for the percentage annual population change calculated from all the observed data (in black), with the mean (solid lines) shown relative to a stable population (\% change $=0$, black dashed line), (c) the observed (black line) and predicted (red line) population trajectory over three generations (159 years, dashed grey lines) and (d) the median reduction over three generation lengths (dashed line) and corresponding probabilities for rates of population reduction falling within the IUCN Red List categories.

Global weighted trend:

Median $(95 \% \mathrm{CI})$ change $=-53.8 \%(-98.4-1214.3 \%)$.

Figure 5: Global weighted trend for Carcharodon carcharias based on weighting the regional posterior probabilities for the rates of population reduction over three generations by the relative area of each region as a proportion of the species' global distribution. The probability of LC is $<50 \%$ and given the wide confidence intervals with the median change, as a precautionary approach, VU is selected as the Red List category. A uniform distribution $U(-100,0)$ was applied for each region in which the species occurs but no trend data were available.

References

Braccini, M. and O'Malley, J. (2018) Temperate Demersal Gillnet and Demersal Longline Fisheries Resource Status Report 2017. In: DJ. Gaughan \& K. Santoro (eds). Status Reports of the Fisheries and Aquatic Resources of Western Australia 2016/17: The State of the Fisheries. Department of Primary Industries and Regional Development, Western Australia. 176-181.
Chaloupka, M. and Balazs, G. (2007) Using Bayesian state-space modelling to assess the recovery and harvest potential of the Hawaiian green sea turtle stock. Ecological Modelling 205: 93-109.
Curtis, T.H., McCandless, C.T., Carlson, J.K., Skomal, G.B., Kohler, N.E., Natanson, L.J., Burgess, G.H., Hoey, J.J., and Pratt, H.L., Jr. (2014) Seasonal distribution and historic tends in bbundance of White Sharks, Carcharodon carcharias, in the Western North Atlantic Ocean. PLoS One 9(6): e99240.
Dudley, S.F.J. and Simpfendorfer, C.A. (2006) Population status of 14 shark species caught in the protective gillnets off KwaZulu-Natal beaches, South Africa, 1978-2003. Marine and Freshwater Research 57: 225-240.
Dewar, H., Eguchi, T., Hyde, J., Kinzey, D., Kohin, S., Moore, J., Taylor, B.L. and Vetter, R. 2013. Status Review of the Northeastern Pacific Population of White Sharks (Carcharodon carcharias) under the Endangered Species Act. NOAA-TM-NMFS-SWFSC-523. Southwest Fisheries Science Centre, National Oceanic and Atmospheric Administration, Panama City, Florida.
Ebert, D.A., Fowler, S., Compagno, L. and Dando, M. (2013) Sharks of the World: A fully Illustated Guide. Wild Nature Press, Plymouth.
Froese, R., Demirel, N., Coro, G., Kleisner, K.M. and Winker, H. (2017) Estimating fisheries reference points from catch and resilience. Fish and Fisheries 18: 506-526.
Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting. (eds J.O. Berger, J.M. Bernardo, A.P. Dawid and A.F.M. Smith). Clarendon Press, Oxford, pp 169-193.
Lawson, J.M., Fordham, S.V., O'Malley, M.P., Davidson, L.N.K., Walls, R.H.L., Heupel, M.R., Stevens, G., Fernando, D., Budziak, A., Simpfendorfer, C.A., Ender, I., Francis, M.P., Notarbartolo di Sciara, G., and Dulvy, N.K. (2017) Sympathy for the devil: a conservation strategy for devil and manta rays. PeerJ 5: e3027.
Plummer, M. (2003) JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs Sampling, (Vol. 124).
Plummer, M., Nicky Best, Cowles, K. and Vines, K. (2006) CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6: 7-11.
Reid, D.D., Robbins, W.D. and Peddemors, V.M. (2011) Decadal trends in shark catches and effort from the New South Wales, Australia, Shark Meshing Program 1950-2010. Marine and Freshwater Research 62: 676-693.
Su, Y.-S. and Yajima, M. (2012) R2jags: A Package for Running jags from R.
Winker, H., Carvalho, F. and Kapur, M. (2018) JABBA: Just Another Bayesian Biomass Assessment. Fisheries Research 204: 275-288.

