Dermochelys coriacea (Northeast Indian Ocean subpopulation)


Taxonomy [top]

Kingdom Phylum Class Order Family

Scientific Name: Dermochelys coriacea (Northeast Indian Ocean subpopulation)
Species Authority: (Vandelli, 1761)
Parent Species:
Common Name(s):
English Leatherback

Assessment Information [top]

Red List Category & Criteria: Data Deficient ver 3.1
Year Published: 2013
Date Assessed: 2013-06-24
Assessor(s): Tiwari, M., Wallace, B.P. & Girondot, M.
Reviewer(s): Bolten, A.B., Casale, P., Chaloupka, M.Y., Dobbs, K., Dutton, P.H., Eckert, K.L., Mortimer, J.A., Musick, J.A., Nel, R., Pritchard, P.C.H., van Dijk, P.P., Miller, J. & Limpus, C.
Contributor(s): Shanker, K., Hamann, M. & Kapurusinghe, T.


The Northeast Indian Leatherback subpopulation nests primarily in the Andaman and Nicobar Islands, India, Sri Lanka, and to a lesser extent in Thailand and Sumatra, Indonesia (Nel 2012). A significant gap persists in our knowledge of the genetic structure of Leatherback rookeries in the Northeast Indian subpopulation, although it is hypothesized that the nesting beaches in Sri Lanka and the Nicobar islands might belong to a distinct Indian Ocean subpopulation (P. Dutton pers. comm.). Tissue samples have been collected in the Andaman Islands and Thailand, but no results are currently available (Nel 2012). The marine habitat for this subpopulation is thought to extend throughout the Bay of Bengal and south of Sri Lanka and along the west coast of Sumatra, Indonesia (Figure 1 in attached PDF), but the geographic boundaries lack resolution. Continuous long-term data sets are unavailable for this subpopulation; existing estimates of nesting activities are incomplete and historical data are unavailable. Therefore this subpopulation is classified as Data Deficient for all applicable criteria A2, A4, B, C, and D.   


Application of Criterion A2 is usually most appropriate for sea turtle populations, as population reduction has been observed in the past where the causes of reduction may not have ceased OR may not be understood OR may not be reversible. Furthermore, applicable subcriteria under Criterion A2 include (b) an index of abundance appropriate to the taxon, and d) actual or potential levels of exploitation. However, A2 could not be evaluated for this subpopulation because population monitoring was insufficient to derive reliable abundance and trend data (Table 1 in attached PDF).


We also applied Criterion B, C, and D to the Northeast Indian subpopulation, but the extent of occurrence exceeded the threshold, and the area of occupancy has not been determined. Because population abundance data are not available, Criteria C and D could not be evaluated.


Our limited knowledge of this subpopulation is summarized by Nel (2012):  based on one year of data, the nesting population in Sri Lanka is estimated to be 100 to 200 females per year; in the Andaman and Nicobar Islands it is estimated at approximately 400 to 600 females per year and in Thailand fewer than 10 nests (<3 females per year). Intensity and extent of threats such as egg harvest and consumption of meat, bycatch, and predation have not been sufficiently quantified.


Assessment Procedure

We assessed the status of the Northeast Indian Leatherback subpopulation by Criteria A-D; as no population viability analysis has been performed, Criterion E could not be applied.


Criterion A: We were able to compile some data on abundance of nesting females or their nesting activities from only the Andaman and Nicobar Islands (Table 1 in attached PDF). For marine turtles, annual counts of nesting females and their nesting activities (more often the latter) are the most frequently recorded and reported abundance metric across index monitoring sites, species, and geographic regions (NRC 2010). We presented and analysed all abundance data in numbers of nests yr-1, as this metric was the most commonly available (Table 1 in attached PDF). However, population monitoring has been sporadic and incomplete, and historical data are not available, and so reliable abundance and trend data could not be derived, despite some basic information on abundance (Table 1 in attached PDF). This subpopulation was classified as Data Deficient.


Criterion B: We defined extent of occurrence (EOO) as the total area included within the geo-referenced boundaries of the Northeast Indian Leatherback subpopulation (Figure 1 in attached PDF), which we calculated to be >8million km2. We defined area of occupancy (AOO) as the linear distribution of nesting sites within the EOO, multiplied by 2 km to account for the IUCN Guidelines for calculating linear AOOs using minimum grid cell size of 2 km x 2 km. The AOO for this subpopulation could not be determined because the distribution of all the nesting beaches is not known. We defined “locations” as biological rookeries, i.e. genetic stocks, within the EOO, but genetic information is unavailable for this population and the number of locations could not be determined. Therefore, this subpopulation classified as Data Deficient for Criterion B.   


Criterion C: Abundance data and life history data (e.g., clutch frequency per female, re-migration intervals, sex ratios) are not available for this subpopulation to estimate the mature adult population and it is therefore classified as Data Deficient under Criterion C.


Criterion D: The number of mature individuals and the number of  locations are not known for the Northeast Indian subpopulation and therefore it is classified as Data Deficient under Criterion D.


Sources of Uncertainty

This is a relatively data poor subpopulation. Nesting beach monitoring is limited because of the remoteness of nesting beaches and unavailability of sufficient infrastructure and resources. Therefore, continuous long-term datasets are not available. Additionally, since the 2004 tsunami, access to many key nesting sites has become more logistically challenging. For further reading on sources of uncertainty in marine turtle Red List assessments, see Seminoff and Shanker (2008).

For further information about this species, see 46967873_Dermochelys_coriacea_Northeast_Indian_Ocean_subpopulation.pdf.
A PDF viewer such as Adobe Reader is required.

Geographic Range [top]

Range Description:

Leatherbacks are distributed circumglobally, with nesting sites on tropical sandy beaches and migratory and foraging ranges that extend into temperate and sub-polar latitudes. The Northeast Indian Leatherback subpopulation nests primarily in the Andaman and Nicobar Islands, Sri Lanka, and to a lesser extent in Thailand and Sumatra, Indonesia (Nel 2012). See Eckert et al. (2012) for review of Leatherback geographic range. 

For further information about this species, see 46967873_Dermochelys_coriacea_Northeast_Indian_Ocean_subpopulation.pdf.
A PDF viewer such as Adobe Reader is required.
Bangladesh; India; Indonesia; Malaysia; Myanmar; Sri Lanka; Thailand
FAO Marine Fishing Areas:
Indian Ocean – eastern; Indian Ocean – western
Range Map:Click here to open the map viewer and explore range.

Population [top]


Leatherbacks are a single species globally comprised of biologically described regional management units (RMUs; Wallace et al. 2010), which describe biologically and geographically explicit population segments by integrating information from nesting sites, mitochondrial and nuclear DNA studies, movements and habitat use by all life stages. RMUs are functionally equivalent to IUCN subpopulations, thus providing the appropriate demographic unit for Red List assessments. There are seven Leatherback subpopulations, including the Northeast Indian Ocean, Southwest Indian Ocean, East Pacific Ocean, West Pacific Ocean, Northwest Atlantic Ocean, Southeast Atlantic Ocean, and Southwest Atlantic Ocean. Multiple genetic stocks have been defined according to geographically disparate nesting areas around the world (Dutton et al. 1999, 2013), and are included within RMU delineations (Wallace et al. 2010; shapefiles can be viewed and downloaded at:

For further information about this species, see 46967873_Dermochelys_coriacea_Northeast_Indian_Ocean_subpopulation.pdf.
A PDF viewer such as Adobe Reader is required.
Population Trend: Unknown

Habitat and Ecology [top]

Habitat and Ecology:

See species account for details. For a thorough review of Leatherback biology, please see Eckert et al. (2012).

Systems: Terrestrial; Marine

Use and Trade [top]

Use and Trade: Leatherback eggs and animals are taken for human use (i.e. consumption and commercial products).

Threats [top]

Major Threat(s):

Threats to Leatherbacks (and other marine turtle species), vary in time and space, and in relative impact to populations. Threat categories were defined by Wallace et al. (2011) as the following:

1) Fisheries bycatch: incidental capture of marine turtles in fishing gear targeting other species;

2) Take: direct utilization of turtles or eggs for human use (i.e. consumption, commercial products);

3) Coastal Development: human-induced alteration of coastal environments due to construction, dredging, beach modification, etc.;

4) Pollution and Pathogens: marine pollution and debris that affect marine turtles (i.e. through ingestion or entanglement, disorientation caused by artificial lights), as well as impacts of pervasive pathogens (e.g. fibropapilloma virus) on turtle health;

5) Climate change: current and future impacts from climate change on marine turtles and their habitats (e.g. increasing sand temperatures on nesting beaches affecting hatchling sex ratios, sea level rise, storm frequency and intensity affecting nesting habitats, etc.).

The relative impacts of individual threats to all Leatherback subpopulations were assessed by Wallace et al. (2011). At a global scale, fisheries bycatch was classified as the highest threat to Leatherbacks globally, followed by human consumption of Leatherback eggs, meat, or other products and coastal development. Due to lack of information, pollution and pathogens was only scored in three subpopulations and climate change was only scored in two subpopulations. Enhanced efforts to assess the impacts of these threats on Leatherbacks—and other marine turtle species—should be a high priority for future research monitoring efforts.

For this Northeast Indian subpopulation, Wallace et al. (2011) found that insufficient information was available to assess impacts of fisheries bycatch, pollution and pathogens, and climate change. Human consumption of turtles and eggs was identified as a high threat to this subpopulation. According to Nel (2012), intensity and extent of threats for the Northeast Indian subpopulation include egg harvest and consumption of meat, fisheries bycatch, and predation of turtles and eggs, but have not been sufficiently quantified.

Conservation Actions [top]

Conservation Actions:

Leatherbacks are protected under various national and international laws, treaties, agreements, and memoranda of understanding. A partial list of international conservation instruments that provide legislative protection for Leatherbacks are: Annex II of the SPAW Protocol to the Cartagena Convention (a protocol concerning specially protected areas and wildlife); Appendix I of CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora); and Appendices I and II of the Convention on Migratory Species (CMS); the Inter-American Convention for the Protection and Conservation of Sea Turtles (IAC), the Memorandum of Understanding on the Conservation and Management of Marine Turtles and their Habitats of the Indian Ocean and South-East Asia (IOSEA), the Memorandum of Understanding on ASEAN Sea Turtle Conservation and Protection, and the Memorandum of Understanding Concerning Conservation Measures for Marine Turtles of the Atlantic Coast of Africa.

Long-term efforts to reduce or eliminate threats to Leatherbacks on nesting beaches have been successful (e.g. Dutton et al. 2005, Chacón-Chaverri and Eckert 2007, Sarti Martínez et al. 2007). Reducing Leatherback bycatch has become a primary focus for many conservation projects around the world, and some mitigation efforts are showing promise (Watson et al. 2005; Gilman et al. 2006, 2011). However, threats to Leatherbacks—bycatch and egg consumption and female exploitation, in particular, persist, and in some places, continue to hinder population recovery (Bellagio report 2007, Fretey et al. 2007,Alfaro-Shigueto et al. 2011, Wallace et al. 2013). For depleted Leatherback populations to recover, the most prevalent and impactful threats must be reduced wherever they occur, whether on nesting beaches or in feeding, migratory, or other habitats (Bellagio report 2007; Wallace et al. 2011, 2013); a holistic approach that addresses threats at all life history stages needs to be implemented (Dutton and Squires 2011). 

Bibliography [top]

Alfaro-Shigueto, J., Mangel, J.C., Bernedo, F., Dutton, P.H., Seminoff, J.A. and Godley, B.J. 2011. Small-scale fisheries of Peru: a major sink for marine turtles in the Pacific. Journal of Applied Ecology 48: 1432-1440.

Andrews, H.V., Krishnan, S. and Biswas, P. 2006. Distribution and status of marine turtles in the Andaman and Nicobar Islands. In: K. Shanker and B. Choudbury (eds), Marine Turtles of India, pp. 33-57. Universities Press, Hyderabad, India.

Avens, L., Taylor, J.C., Goshe, L.R., Jones T.T. and Hastings, M. 2009. Use of skeletochronological analys to estimate the age of leatherback sea turtles Dermochelys coriacea in the western North Atlantic. Endangered Species Research 8: 165-177.

Bellagio Report. 2007. Bellagio Sea Turtle Conservation Initiative: strategic planning for long-term financing of Pacific Leatherback conservation and recovery. Terengganu, Malaysia.

Blanc, J. 2008. African Elephant (Loxodonta africana). Available at: (Accessed: 21/09/2012).

Chacón-Chaverri, D. and Eckert, K.L. 2007. Leatherback sea turtle nesting at Gandoca Beach in Caribbean Costa Rica: management recommendations from fifteen years of conservation. Chelonian Conservation and Biology 6: 101-110.

Dutton, D.L., Dutton, P.H., Chaloupka, M. and Boulon, R.H. 2005. Increase of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to long-term nest protection. Biological Conservation 126: 186-204.

Dutton, P.H. and Squires, D. 2011. A holistic strategy for Pacific sea turtle conservation. In: P.H. Dutton, D. Squires and A. Mahfuzuddin (eds), Conservation and sustainable management of sea turtles in the Pacific Ocean, pp. 37-59. University of Hawaii Press, Honolulu, Hawaii.

Dutton, P.H., Roden, S.E., Stewart, K.R., LaCasella, E., Tiwari M., Formia A., Thomé J.C., Livingstone, S.R., Eckert, S., Chacón-Chaverri, D., Rivalan, P. and Allman, P. 2013. Population stock structure of leatherback turtles (Dermochelys coriacea) in the Atlantic revealed using mtDNA and microsatellite markers. Conservation Genetics 14(3): 625-636. DOI: 10.1007/s10592-013-0456-0.

Eckert, K.L., Wallace, B.P., Frazier, J.G., Eckert, S.A. and Pritchard, P.C.H. 2012. Synopsis of the biological data on the leatherback sea turtle (Dermochelys coriacea). U.S. Department of Interior, Fish and Wildlife Service, Biological Technical Publication BTP-R4015-2012. Washington, DC.

Fretey, J., Billes A. and Tiwari, M. 2007. Leatherback, Dermochelys coriacea, nesting along the Atlantic coast of Africa. Chelonian Conservation and Biology 6: 126-129.

Gilman, E., Gearhart, J., Price, B., Eckert, S., Milliken, H., Wang, J., Swimmer, Y., Shiode, D., Abe, O., Peckham, S.H., Chaloupka, M., Hall, M., Mangel, J., Alfaro-Shigueto. J., Dalzell, P. and Ishizaki, A. 2011. Mitigating sea turtle by-catch in coastal passive net fisheries. Fish and Fisheries 11(1): 57-88.

Gilman, E., Zollet, E., Beverley, S., Nkano, H., Davis, K., Shiode, D., Dalzell, P. and Kinan, I. 2006. Reducing sea turtle by-catch in pelagic longline fisheries. Fish and Fisheries 7: 2-23.

Hamann, M., Limpus, C., Hughes, G., Mortimer, J. and Pilcher, N. 2006. Assessment of the conservation status of the leatherback turtle in the Indian Ocean and South-East Asia, including consideration of the impacts of the December 8 2004 tsunami on turtles and turtle habitats. IOSEA Marine Turtle MoU Secretariat. Bangkok, Thailand.

IUCN. 2013. IUCN Red List of Threatened Species (ver. 2013.2). Available at: (Accessed: 13 November 2013).

Jones, T.T., Hastings, M.D., Bostrom, B.L., Pauly, D.P. and Jones, D.R. 2011. Growth of captive leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild: Implications for population decline and recovery. Journal of Experimental Marine Biology and Ecology 399: 84-92.

Namboothri, N., Chandi, M., Subramaniam, D. and Shanker, K. 2010. Leatherback turtles at South Bay, Little Andamans (2007-2010). Compiled report submitted to the Andaman and Nicobar Forest Department.

National Research Council (NRC) of the National Academies, USA. 2010. Assessment of sea turtle status and trends: Integrating demography and abundance. The National Academies Press. Washington, DC.

Nel, R. (compiler). 2012. Assessment of the conservation status of the leatherback turtle in the Indian Ocean and South-East Asia. Secretariat of the Indian Ocean – South-East Asian Marine Turtle Memorandum of Understanding. Bangkok, Thailand.

Sarti Martínez, L., Barragán, A.R., Muñoz, D.G., García, N., Huerta, P. and Vargas F. 2007. Conservation and biology of the leatherback turtle in the Mexican Pacific. Chelonian Conservation and Biology 6: 70-78.

Seminoff, J.A. and Shanker, K. 2008. Marine turtles and IUCN Red Listing: A review of the process, the pitfalls, and novel assessment approaches. Journal of Experimental Marine Biology and Ecology 356: 52-68.

Spotila, J., Dunham, A., Leslie, A., Steyermark, A., Plotkin, P. and Paladino, F. 1996. Worldwide population decline of Dermochelys coriacea: are leatherback turtles going extinct? Chelonian Conservation Biology 2(2): 209-222.

The State of the World’s Sea Turtles (SWOT) Scientific Advisory Board. 2011. Minimum Data Standards for Nesting Beach Monitoring. Technical Report.

Wallace, B.P., DiMatteo, A.D., Bolten, A.B., Chaloupka, M.Y., Hutchinson, B.J., Abreu-Grobois, F.A., Mortimer, J.A., Seminoff, J.A., Amorocho, D., Bjorndal, K.A., Bourjea, J., Bowen, B.W., Briseño-Dueñas, R., Casale, P., Choudhury, B.C., Costa, A., Dutton, P.H., Fallabrino, A., Finkbeiner, E.M., Girard, A., Girondot, M., Hamann, .M, Hurley, B.J., López-Mendilaharsu, M., Marcovaldi, M.A., Musick, J.A., Nel, R., Pilcher, N.J., Troëng, S., Witherington, B. and Mast, RB. 2011. Global conservation priorities for marine turtles. PLoS ONE 6(9): e24510. doi:10.1371/journal.pone.0024510.

Wallace, B.P., DiMatteo, A.D., Hurley, B.J., Finkbeiner, E.M., Bolten, A.B., Chaloupka, M.Y., Hutchinson, B.J., Abreu-Grobois, F.A., Amorocho, D., Bjorndal, K.A., Bourjea, J., Bowen, B.W., Briseño-Dueñas, R., Casale, P., Choudhury, B.C., Costa, A., Dutton, P.H., Fallabrino, A., Girard, A., Girondot, M., Godfrey, M.H., Hamann, M., López-Mendilaharsu, M., Marcovaldi, M.A., Mortimer, J.A., Musick, J.A., Nel, R., Pilcher, N.J., Seminoff, J.A., Troëng, S., Witherington, B. and Mast, R.B. 2010. Regional Management Units for marine turtles: A novel framework for prioritizing conservation and research across multiple scales. PLoS ONE 5(12): e15465. doi/10.1371/journal.pone.0015465.

Wallace, B.P., Kot, C.Y., DiMatteo, A.D., Lee, T., Crowder, L.B. and Lewison, R.L. 2013. Impacts of fisheries bycatch on marine turtle populations worldwide: toward conservation and research priorities. Ecosphere 4: 1-19. doi:10.1890/ES12-00388.1.

Watson, J.W., Epperly S.P., Shah A.K. and Foster D.G. 2005. Fishing methods to reduce sea turtle mortality associated with pelagic longlines. Canadian Journal of Fisheries and Aquatic Sciencies 62: 965-981.

Zug, G.R. and Parham, J.F. 1996. Age and growth in leatherback turtles, Dermochelys coriacea (Testudines: Dermochelyidae): A skeletochronological analysis. Chelonian Conservation and Biology 2(2): 244-249.

Citation: Tiwari, M., Wallace, B.P. & Girondot, M. 2013. Dermochelys coriacea (Northeast Indian Ocean subpopulation). In: The IUCN Red List of Threatened Species. Version 2015.2. <>. Downloaded on 01 September 2015.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided