Map_thumbnail_large_font

Avicennia schaueriana

Status_ne_offStatus_dd_offStatus_lc_onStatus_nt_offStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
PLANTAE TRACHEOPHYTA MAGNOLIOPSIDA LAMIALES AVICENNIACEAE

Scientific Name: Avicennia schaueriana
Species Authority: Stapf & Leechman ex Moldenke
Common Name(s):
Spanish Mangle Blanco, Mangle Negro
Taxonomic Notes: This species is differentiated from A. germinans by cuticular waxes and AFLPs (see Dodd and Rafii 2002). It is a sister to A. bicolor (a Central American Pacific coast endemic).

Assessment Information [top]

Red List Category & Criteria: Least Concern ver 3.1
Year Published: 2010
Date Assessed: 2007-03-21
Assessor(s): Ellison, A., Farnsworth, E. & Moore, G.
Reviewer(s): Polidoro, B.A., Livingstone, S.R. & Carpenter, K.E. (Global Marine Species Assessment Coordinating Team)
Justification:
The majority of this species population is found in Brazil, encompassing over 90% of the documented occurrences. Since 1980, Brazil is estimated to have lost only 5% of its mangrove cover. It is listed as Least Concern.

Geographic Range [top]

Range Description: This species has a discontinuous distribution as it is found from the lower Lesser Antilles and the Atlantic coast of northern South America from Guyana south to Suriname. It is absent from French Guiana (Dodd and Rafii 2002). However, Brazil contains over 90% of the estimated areal extent of this species (Wilkie and Fortuna 2003).
Countries:
Native:
Anguilla; Antigua and Barbuda; Barbados; Brazil; Dominica; France; French Guiana; Grenada; Guadeloupe; Guyana; Martinique; Montserrat; Saint Kitts and Nevis; Saint Lucia; Saint Vincent and the Grenadines; Suriname; Trinidad and Tobago; Venezuela, Bolivarian Republic of
FAO Marine Fishing Areas:
Native:
Atlantic – southwest; Atlantic – western central
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: Although there is no species specific population information, there are areas of significant population decline throughout its range.

Genetic studies of Avicennia are numerous as microsatellite loci, RAPDs, and AFLPs have been developed for this species (Ceron-Souza et al. 2006). Eastern and western Atlantic provenances of Avicennia show significant genetic differentiation, as indicated by leaf chemistry (Dodd and Bousquet-Melou 2000). Studies to date show well-defined genetic structure differentiating western Atlantic from Pacific populations across the isthmus of Panama (Dodd et al. 2002) and among populations sharing a coastline (Ceron-Souza et al. 2005).
Population Trend: Decreasing

Habitat and Ecology [top]

Habitat and Ecology: This species typically grows in the intertidal regions of sheltered tropical and subtropical coasts (Saenger 2002). It is a small tree, 15-20 m in size. There are no data on age and size of maturity. This species is very tolerant of high salinity and of cold (Tomlinson 1995).

In Northern Brazil, mangrove swamps dominated by A. schaueriana provide critical habitat for the mangrove crab Ucides cordatus. This crab is collected both for subsistence use and for regional/national markets. In some areas of northern Brazil, community-based initiatives are effectively managing the crab harvest and the mangrove forests. However, in other areas, the crabs are overharvested and the mangroves are being cut relatively rapidly, further reducing habitat for the crabs (Diele et al. 2005, Glaser and Diele 2004).
Systems: Terrestrial; Marine

Use and Trade [top]

Use and Trade: This species is primarily harvested for fuelwood and construction materials. The "Existence value" of Itaipu Lagoon, a mangrove lagoon of 10,000 ha in Niterói, Rio de Janeiro, Brazil ranges from US$2.2 (willingness to pay) to U.S.$7.9 Million (willingness to work) (Fonseca & Drummond 2003).

Threats [top]

Major Threat(s): In Brazil this species is threatened by aquaculture development, human settlement and water pollution (Barth et al. 2006; Pagliosa 2004. But Brazil has only lost an estimated 5% of its mangrove area since 1980 (FAO 2007).

All mangrove ecosystems occur within mean sea level and high tidal elevations, and have distinct species zonations that are controlled by the elevation of the substrate relative to mean sea level. This is because of associated variation in frequency of elevation, salinity and wave action (Duke et al. 1998). With rise in sea-level, the habitat requirements of each species will be disrupted, and species zones will suffer mortality at their present locations and re-establish at higher elevations in areas that were previously landward zones (Ellison 2005). If sea-level rise is a continued trend over this century, then there will be continued mortality and re-establishment of species zones. However, species that are easily dispersed and fast growing/ ast producing will cope better than those which are slower growing and slower to reproduce.

In addition, mangrove area is declining globally due to a number of localized threats. The main threat is habitat destruction and removal of mangrove areas. Reasons for removal include cleared for shrimp farms, agriculture, fish ponds, rice production and salt pans, and for the development of urban and industrial areas, road construction, coconut plantations, ports, airports, and tourist resorts. Other threats include pollution from sewage effluents, solid wastes, siltation, oil, and agricultural and urban runoff. Climate change is also thought to be a threat, particularly at the edges of a species range. Natural threats include cyclones, hurricane and tsunamis.

Conservation Actions [top]

Conservation Actions: There are no conservation measures specific to this species, but its range may include some marine and coastal protected areas. Continued monitoring and research is recommended, as well as the inclusion of mangrove areas in marine and coastal protected areas.

Research is needed to establish a minimum viable population size for the taxon. Demographic modeling could also be useful. Research on exploitation and impacts of harvesting on populations is needed. More cost/benefit analyses of mangrove conversion, particularly in Brazil, are critical because the mangrove crab (Ucides cordatus) is extensively harvested from intact mangroves for subsistence and regional markets.

New Landsat and IKONOS technology can and should be used to conduct species-based, landscape-level monitoring of deforestation (Kovacs et al. 2005). More research is needed to document Avicennia's influences on water quality, erosion control and pollution buffering. All conservation of Avicennia (indeed, any mangrove species) needs to be undertaken at the habitat level.

Citation: Ellison, A., Farnsworth, E. & Moore, G. 2010. Avicennia schaueriana. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 31 July 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please fill in the feedback form so that we can correct or extend the information provided