Map_thumbnail_large_font

Acanthurus nigrofuscus

Status_ne_offStatus_dd_offStatus_lc_onStatus_nt_offStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
ANIMALIA CHORDATA ACTINOPTERYGII PERCIFORMES ACANTHURIDAE

Scientific Name: Acanthurus nigrofuscus
Species Authority: (Forsskål, 1775)
Common Name/s:
English Brown Surgeonfish, Lavender Tang, Dusky Surgeonfish, Blackspot Surgeonfish, Spot-cheeked Surgeonfish
French Chirurgien Brun
Synonym/s:
Acanthurus fuliginosus Lesson, 1831
Acanthurus lineolatus Valenciennes, 1835
Acanthurus matoides Valenciennes, 1835
Acanthurus rubropunctatus Rüppell, 1829
Chaetodon nigrofuscus Forsskål, 1775
Ctenodon rubropunctatus (Rüppell, 1829)
Hepatus fuliginosus (Lesson, 1831)
Hepatus lineolatus (Valenciennes, 1835)
Hepatus lucillae Fowler, 1938
Teuthis lucillae (Fowler, 1938)

Assessment Information [top]

Red List Category & Criteria: Least Concern ver 3.1
Year Published: 2012
Date Assessed: 2010-05-04
Assessor/s: Choat, J.H., McIlwain, J., Abesamis, R., Clements, K.D., Myers, R., Nanola, C., Rocha, L.A., Russell, B. & Stockwell, B.
Reviewer/s: Davidson, L., Edgar, G. & Kulbicki, M.
Justification:
Acanthurus nigrofuscus is widespread in the Indo-Pacific Region and is one of the most abundant surgeonfishes on coral reefs (Randall 2002). It is common and dominant on reefs in most of its range. It is caught incidentally for food and is a major component of the aquarium trade in parts of its range (e.g., West Hawaii). There was no clear trend in mean biomass observed in marine protected areas and in fished areas in the Philippines (Stockwell et al. 2009) and no clear trend in the declines in overall density in Fish Replenishment Areas in West Hawaii (Walsh et al. 2010). Harvest is not considered a major threat globally and this species occurs in several marine reserves in parts of its distribution. It is therefore listed as Least Concern.

Geographic Range [top]

Range Description: Acanthurus nigrofuscus is widespread in the Indo-Pacific Region from the Red Sea and coast of East Africa to the Pitcairn Islands and Hawaiian Islands, northwards to southern Japan and southwards to New South Wales, Australia. It was recorded from Western Australia to Rottnest Island (Allen and Swainston 1988).
Countries:
Native:
American Samoa (American Samoa); Australia; British Indian Ocean Territory; Brunei Darussalam; Cambodia; China; Christmas Island; Cocos (Keeling) Islands; Comoros; Cook Islands; Disputed Territory (Paracel Is., Spratly Is.); Djibouti; Egypt; Eritrea; Fiji; French Polynesia; French Southern Territories (Mozambique Channel Is.); Guam; Hong Kong; India (Andaman Is., Nicobar Is.); Indonesia; Israel; Japan; Jordan; Kenya; Kiribati (Gilbert Is., Kiribati Line Is., Phoenix Is.); Macao; Madagascar; Malaysia; Maldives; Marshall Islands; Mauritius (Mauritius (main island), Rodrigues); Mayotte; Micronesia, Federated States of ; Mozambique; Myanmar; Nauru; New Caledonia; Niue; Norfolk Island; Northern Mariana Islands; Palau; Papua New Guinea; Philippines; Pitcairn; Réunion; Samoa; Saudi Arabia; Seychelles; Singapore; Solomon Islands; Somalia; South Africa; Sri Lanka; Sudan; Taiwan, Province of China; Tanzania, United Republic of; Thailand; Timor-Leste; Tokelau; Tonga; Tuvalu; United States Minor Outlying Islands (Howland-Baker Is., Johnston I., Midway Is., US Line Is., Wake Is.); Vanuatu; Viet Nam; Wallis and Futuna; Yemen
FAO Marine Fishing Areas:
Native:
Indian Ocean – eastern; Indian Ocean – western; Pacific – eastern central; Pacific – northwest; Pacific – southwest; Pacific – western central
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: Acanthurus nigrofuscus is one of the most abundant surgeonfishes on coral reefs (Randall 2002). In Fagatale Bay, American Samoa, it is a dominant species on the reef slope (Green et al. 1999). It was recorded as common in terms of relative abundance in the northern Bismarck Sea, Papua New Guinea (Allen 2009). It was recorded as occasional in Calamianes Islands, Philippines, Milne Bay Province, Papua New Guinea and in Raja Ampat, Indonesia (Werner and Allen 2000; Allen 2003, 2003b). In South Kona, Big Island, Hawaii, A. nigrofuscus was one of the most abundant species recorded (Friedlander et al. 2006). It is the most abundant acanthurid in Guam. There was no evidence of an increase in abundance inside protected areas 10 years of protection (J. McIlwain unpub. data).

In West Hawaii, it is one of the top 10 most collected aquarium fish. There was a significant decrease in overall density across the nine Fish Replenishment Areas (FRAs). As with density there was a significant decrease in the effectiveness of the FRAs for this species. Acanthurus nigrofuscus is not heavily exploited, averaging Zebrasoma flavescens and Ctenochaetus strigosus (Walsh et al. 2010).

In Nha Trang Bay MPA, Viet Nam, it is one of the most common species recorded and was encountered in almost all of the study sites (Nguyen and Phan 2006). In Kenya, landings during 1978-2001 for families that are less important in commercial catches (e.g., scarinae and Acanthuridae) showed rising catches (1978-1984) followed by a general decline during the 1990s, but the landings for the scarinae showed a rising trend in recent years (Kaunda-Arara et al. 2003).

In the Nabq Managed Resource Protected Area, South Sinai, Egyptian Red Sea, mean abundances of this species showed significant differences at various depths and between no-take zones (NTZ) and take zones (TZ). At 1 m depth of the NTZ, mean abundance was recorded at 50.67 while in the TZ it was 32.80. At 3 m depth of the NTZ, mean abundance was recorded at 38.67 while in the TZ it was 109.00. At 10 m depth of the NTZ, mean abundance was recorded at 32.08 and 58.25 in the TZ (Ashworth and Ormond 2005).

In the central Philippines, density and biomass of herbivorous fish in reserves had positive relationships with duration of reserve protection. Acanthuridae and Labridae (parrotfishes) were the major families that increased in biomass inside reserves with duration of reserve protection. Herbivore biomass inside reserves compared to fished sites was on average 1.4, 4.8 and 8.1 times higher at 0.5, to 4.5 to 7 and 8 to 11 years of protection, respectively.

For A. nigrofuscus, fished site mean biomass was recorded at 0.02 (kg per 500 m2) while mean biomass recorded in 6 reserves were 0.01 (0.5 to 4 years of protection), 0.21, 2.14, 0.06 (5 to 7 years of protection), 0.38 and 0.13 (8 to 11 years of protection) (kg per 500 m2), respectively (Stockwell et al. 2009). There was no clear trend in mean biomass between protected areas and fished areas in the central Visayas (B. Stockwell pers. comm. 2010).
Population Trend: Stable

Habitat and Ecology [top]

Habitat and Ecology: Acanthurus nigrofuscus is one of the smallest surgeonfishes, but aggressive. It is generally abundant on shallow coral reefs or rocky bottoms (Randall 2001a) and below the surge zone (Randall 2001b). It feeds on algal turf (Choat et al. 2004). It feeds mainly on red algae. It sneaks up on A. lineatus territories (J.H. Choat pers. comm. 2010). It is classified as a grazer (Green and Bellwood 2009) and a herbivore browser (Walsh et al. 2010). Maximum age recorded was 16 years (Choat and Robertson 2002a).  There were locality specific variations in maximum sizes (J.H. Choat pers. comm. 2010).


Spawning

The sexes are separate among the acanthurids (Reeson 1983). Acanthurids do not display obvious sexual dimorphism, males assume courtship colours (J.H. Choat pers. comm. 2010). Spawning aggregations were observed in the Red Sea (Myberg et al. 1988), Aldabra Atoll, Palau and Lizard Island, Australia (Robertson 1983). Adults made daily afternoon migrations from shallow feeding areas to specific spawning sites located at the most seaward extension of the reef (Robertson 1983, Myrberg et al.1988) or channels between lagoon and open ocean (Aldabra) (Robertson 1983). This species was observed to form spawning aggregations of several thousand individuals. Dense aggregations formed expanding domes that would repeatedly rise off the bottom to about 3 m height, then rapidly return to the substrate. Rapid succession of spawning rushes occurred by subgroups of 4-15 individuals, led by an individual female followed by multiple males, at the top of the dome, followed by a period of no spawning before spawning activity commences again (Domeier and Colin 1997). Robertson (1983) observed group spawning in pulses of subgroup activity. After large pulses of spawning activity, streams of fish migrated away from the spawning site (Myrberg et al. 1988).

In Aldabra Atoll it was observed to spawn before the new/full moon during November-December. In the Great Barrier Reef it spawns from February-April. In Palau it spawns from January to April, 5-7 days before the new/full moon (Robertson 1983).
Systems: Marine

Threats [top]

Major Threat(s): There was no clear trend in mean biomass observed between fished and marine reserves in the central Philippines (Stockwell et al. 2009). There are no major threats known for this species.

Surgeonfishes show varying degrees of habitat preference and utilization of coral reef habitats, with some species spending the majority of their life stages on coral reef while others primarily utilize seagrass beds, mangroves, algal beds, and /or rocky reefs. The majority of surgeonfishes are exclusively found on coral reef habitat, and of these, approximately 80% are experiencing a greater than 30% loss of coral reef area and degradation of coral reef habitat quality across their distributions. However, more research is needed to understand the long-term effects of coral reef habitat loss and degradation on these species' populations. Widespread coral reef loss and declining habitat conditions are particularly worrying for species that recruit into areas with live coral cover, especially as studies have shown that protection of pristine habitats facilitate the persistence of adult populations in species that have spatially separated adult and juvenile habitats (Comeros-Raynal et al. 2012).

Conservation Actions [top]

Conservation Actions: There are no species-specific conservation measures in place for this species. However, its distribution overlaps several marine protected areas within its range. In Queensland, Australia, there is a recreational catch limit of 5 per species and a minimum size limit of 25 cm (Department of Primary Industries accessed 8 April 2010).
Citation: Choat, J.H., McIlwain, J., Abesamis, R., Clements, K.D., Myers, R., Nanola, C., Rocha, L.A., Russell, B. & Stockwell, B. 2012. Acanthurus nigrofuscus. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <www.iucnredlist.org>. Downloaded on 17 April 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please fill in the feedback form so that we can correct or extend the information provided