Lycaon pictus (North Africa subpopulation)


Taxonomy [top]

Kingdom Phylum Class Order Family

Scientific Name: Lycaon pictus (North Africa subpopulation)
Species Authority: (Temminck, 1820)
Parent Species:
Common Name(s):
English African Wild Dog

Assessment Information [top]

Red List Category & Criteria: Critically Endangered D ver 3.1
Year Published: 2012
Date Assessed: 2012-05-18
Assessor(s): Woodroffe, R. & Sillero-Zubiri, C.
Reviewer(s): Hoffmann, M. & Hilton-Taylor, C.
Contributor(s): Abdelgadir Ali, M., Belbachir, F., Belbachir-Bazi, A., Berbash, A., Eldeen, A. & Rasmussen, G.
The only country in North Africa in which African Wild Dogs may still persist is Algeria, but there is no information on their current status. If they do persist, there seems little doubt that the total subpopulation size does not exceed 50 mature individuals, thus qualifying the subpopulation for listing as Critically Endangered under D.

Geographic Range [top]

Range Description: Historical data indicate that African Wild Dogs were formerly distributed throughout sub-Saharan Africa, from desert (Lhotse 1946) to mountain summits (Thesiger 1970), and probably were absent only from lowland rainforest and the driest desert (Schaller 1972). They have disappeared from much of their former range. The species is virtually eradicated from North Africa.

The current geographic distribution of African Wild Dogs was estimated using data compiled by the IUCN SSC range-wide conservation planning process for Cheetahs and African Wild Dogs, including regional strategies (IUCN SSC 2008, in prep.) and subsequent associated national action plans ( Current African Wild Dog range was considered to comprise only the “resident range” identified by participants in the IUCN SSC process: this represents land where participants were confident that African Wild Dogs had been confirmed to be resident within the previous 10 years. Land where residence was not confirmed (e.g., possible range, unknown range) was excluded.
Possibly extinct:
Mali; Niger
Regionally extinct:
Egypt; Libya; Mauritania; Sudan
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: The only country in North Africa in which African Wild Dogs may still persist is Algeria, but there is no information on the current status of the population there. It is likely that the total subpopulation size is less than 50 mature individuals.
Population Trend: Unknown

Habitat and Ecology [top]

Habitat and Ecology: African Wild Dogs are generalist predators, occupying a range of habitats including short-grass plains, semi-desert, bushy savannas and upland forest. The species mostly hunts medium-sized antelope. Whereas they weigh 20–30 kg, their prey average around 50 kg, and may be as large as 200 kg. In most areas their principal prey are Impala (Aepyceros melampus), Greater Kudu (Tragelaphus strepsiceros), Thomson's Gazelle (Eudorcas thomsonii) and Common Wildebeest (Connochaetes taurinus). They will give chase of larger species, such as Common Eland (Tragelaphus oryx) and African Buffalo (Syncerus caffer), but rarely kill such prey. Small antelope, such as Dik-dik (Madoqua spp.), Steenbok (Raphicerus campestris) and Duiker (tribe Cephalophini) are important in some areas, and warthogs (Phacochoerus spp.) are also taken in some populations. African Wild Dogs also take very small prey such as hares, lizards and even eggs, but these make a very small contribution to their diet.

Generation length
Data on lifetime reproductive success of 19 alpha (breeding) females in western Zimbabwe indicate that 50% of reproductive output was achieved by age 5.5 years (SD 1.35, range 3–8; G.S.A. Rasmussen, unpubl. data). An alternative method, considers the average age of mothers of known litters, without the need for data on lifetime reproductive success. This method gives good agreement with the IUCN recommendations on calculating generation length, indicating a mean female breeding age of 5.7 years from the Zimbabwe dataset. Using this method, data from 18 litters born in Kenya to known-age mothers suggest a mean generation length of 5.0 years (R. Woodroffe, unpubl. data). Both studies suggest a minimum age at first breeding of approximately three years. Based on these data, for convenience we have estimated changes in African Wild Dog populations using a generation time of five years.
Systems: Terrestrial

Use and Trade [top]

Use and Trade: Across most of its geographical range, there is minimal utilization of this species.

Threats [top]

Major Threat(s): The principal threat to African Wild Dogs is habitat fragmentation, which increases their contact with people and domestic animals, resulting in human-wildlife conflict and transmission of infectious disease. The important role played by human-induced mortality has two long-term implications. First, it makes it likely that, outside protected areas, African Wild Dogs may be unable to coexist with increasing human populations unless land use plans and other conservation actions are implemented. Second, African Wild Dog ranging behaviour leads to a very substantial "edge effect", even in large reserves. Simple geometry dictates that a reserve of 5,000 km² contains no point more than 40 km from its borders – a distance well within the range of distances travelled by a pack of African Wild Dogs in their usual ranging behaviour. Thus, from an African Wild Dog's perspective, a reserve of this size (fairly large by most standards) would be all edge. As human populations rise around reserve borders, the risks to African Wild Dogs venturing outside are also likely to increase. Under these conditions, only the very largest unfenced reserves will be able to provide any level of protection for African Wild Dogs. In South Africa, “predator proof” fencing around small reserves has proved reasonably effective at keeping dogs confined to the reserve, but such fencing is not 100% effective (Davies-Mostert et al. 2009) and is unlikely to be long-term beneficial for wildlife communities.

Even in large, well-protected reserves, or in stable populations remaining largely independent of protected areas (as in northern Botswana), African Wild Dogs live at low population densities. Predation by Lions, and perhaps competition with Spotted Hyaenas, contribute to keeping African Wild Dog numbers below the level that their prey base could support. Such low population density brings its own problems. The largest areas contain only relatively small wild dog populations; for example, the Selous Game Reserve, with an area of 43,000 km² (about the size of Switzerland), is estimated to contain about 800 African Wild Dogs. Most reserves, and probably most African Wild Dog populations, are smaller. For example, the population in Niokolo-Koba National Park and buffer zones (about 25,000 km²) is likely to be not more than 50–100 dogs. Such small populations are vulnerable to extinction. "Catastrophic" events such as outbreaks of epidemic disease may drive them to extinction when larger populations have a greater probability of recovery – such an event seems to have led to the local extinction of the small African Wild Dog population in the Serengeti ecosystem on the Kenya-Tanzania border. Problems of small population size will be exacerbated if, as seems likely, small populations occur in small reserves or habitat patches. As discussed above, animals inhabiting such areas suffer a strong "edge effect". Thus, small populations might be expected to suffer disproportionately high mortality as a result of their contact with humans and human activity.

Conservation Actions [top]

Conservation Actions: A regional conservation strategy is currently being drafted for North and Western Africa subpopulations (see

Citation: Woodroffe, R. & Sillero-Zubiri, C. 2012. Lycaon pictus (North Africa subpopulation). The IUCN Red List of Threatened Species. Version 2014.2. <>. Downloaded on 24 July 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please fill in the feedback form so that we can correct or extend the information provided