Status_ne_offStatus_dd_offStatus_lc_offStatus_nt_offStatus_vu_onStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
Animalia Cnidaria Anthozoa Scleractinia Faviidae

Scientific Name: Caulastrea connata
Species Authority: (Ortmann, 1892)

Assessment Information [top]

Red List Category & Criteria: Vulnerable A4c ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor(s): DeVantier, L., Hodgson, G., Huang, D., Johan, O., Licuanan, A., Obura, D., Sheppard, C., Syahrir, M. & Turak, E.
Reviewer(s): Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
This species is widespread and rare throughout its range. It is susceptible to bleaching and disease due to a more restricted depth range, and has suffered extensive reduction of coral reef habitat due to a combination of threats. Specific population trends are unknown but population reduction can be inferred from declines in habitat quality based on the combined estimates of both destroyed reefs and reefs at the critical stage of degradation within its range (Wilkinson 2004). Its threat susceptibility increases the likelihood of being lost within one generation in the future from reefs at a critical stage. Therefore, the estimated habitat degradation and loss of 35% over three generation lengths (30 years) is the best inference of population reduction and meets the threshold for Vulnerable under Criterion A4c. It will be important to reassess this species in 10 years time because of predicted threats from climate change and ocean acidification.

Geographic Range [top]

Range Description:In the Indo-West Pacific, this species is found in the Red Sea and the southwest and northern Indian Ocean.
Countries occurrence:
Native:
British Indian Ocean Territory; Comoros; Djibouti; Egypt; Eritrea; India; Israel; Jordan; Kenya; Madagascar; Maldives; Mauritius; Mayotte; RĂ©union; Saudi Arabia; Seychelles; Somalia; Sri Lanka; Sudan; Tanzania, United Republic of; Yemen
FAO Marine Fishing Areas:
Native:
Indian Ocean – western; Indian Ocean – eastern
Additional data:
Lower depth limit (metres):10
Range Map:Click here to open the map viewer and explore range.

Population [top]

Population:This is a rare species.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is particularly susceptible to bleaching, disease, and other threats and therefore population decline is based on both the percentage of destroyed reefs and critical reefs that are likely to be destroyed within 20 years (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. See the Supplementary Material for further details on population decline and generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Current Population Trend:Decreasing
Additional data:
Population severely fragmented:No

Habitat and Ecology [top]

Habitat and Ecology:This species occurs in shallow, tropical reef environments, including reef flats, lagoons and upper slopes. It often forms small colonies less than 20 cm in diameter (Wood 1983). This species is found on the back slope and foreslope of reefs. This species is found to at least 10 m.
Systems:Marine
Generation Length (years):10

Threats [top]

Major Threat(s): In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: All corals are listed on CITES Appendix II. Parts of the species’ range fall within Marine Protected Areas.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Classifications [top]

9. Marine Neritic -> 9.8. Marine Neritic - Coral Reef -> 9.8.2. Back Slope
suitability: Suitable  
9. Marine Neritic -> 9.8. Marine Neritic - Coral Reef -> 9.8.3. Foreslope (Outer Reef Slope)
suitability: Suitable  
9. Marine Neritic -> 9.8. Marine Neritic - Coral Reef -> 9.8.4. Lagoon
suitability: Suitable  
1. Land/water protection -> 1.1. Site/area protection
2. Land/water management -> 2.1. Site/area management
2. Land/water management -> 2.3. Habitat & natural process restoration
3. Species management -> 3.2. Species recovery
3. Species management -> 3.4. Ex-situ conservation -> 3.4.1. Captive breeding/artificial propagation
3. Species management -> 3.4. Ex-situ conservation -> 3.4.2. Genome resource bank

In-Place Research, Monitoring and Planning
In-Place Land/Water Protection and Management
  Occur in at least one PA:Yes
In-Place Species Management
In-Place Education
1. Residential & commercial development -> 1.1. Housing & urban areas
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Residential & commercial development -> 1.2. Commercial & industrial areas
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Residential & commercial development -> 1.3. Tourism & recreation areas
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

4. Transportation & service corridors -> 4.3. Shipping lanes
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

5. Biological resource use -> 5.4. Fishing & harvesting aquatic resources -> 5.4.1. Intentional use: (subsistence/small scale)
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

5. Biological resource use -> 5.4. Fishing & harvesting aquatic resources -> 5.4.3. Unintentional effects: (subsistence/small scale)
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

5. Biological resource use -> 5.4. Fishing & harvesting aquatic resources -> 5.4.6. Motivation Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

6. Human intrusions & disturbance -> 6.1. Recreational activities
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.2. Species disturbance

8. Invasive & other problematic species & genes -> 8.1. Invasive non-native/alien species -> 8.1.1. Unspecified species
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality
  • 2. Species Stresses -> 2.2. Species disturbance
  • 2. Species Stresses -> 2.3. Indirect species effects -> 2.3.2. Competition

9. Pollution -> 9.1. Domestic & urban waste water -> 9.1.3. Type Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.2. Industrial & military effluents -> 9.2.3. Type Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.3. Agricultural & forestry effluents -> 9.3.2. Soil erosion, sedimentation
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.3. Agricultural & forestry effluents -> 9.3.4. Type Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.5. Air-borne pollutants -> 9.5.3. Ozone
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

11. Climate change & severe weather -> 11.3. Temperature extremes
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation
  • 2. Species Stresses -> 2.1. Species mortality
  • 2. Species Stresses -> 2.2. Species disturbance
  • 2. Species Stresses -> 2.3. Indirect species effects -> 2.3.8. Other

11. Climate change & severe weather -> 11.4. Storms & flooding
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Research -> 1.1. Taxonomy
1. Research -> 1.2. Population size, distribution & trends
1. Research -> 1.3. Life history & ecology
1. Research -> 1.5. Threats
1. Research -> 1.6. Actions
3. Monitoring -> 3.1. Population trends

♦  Pets/display animals, horticulture
 International : ✓ 

Bibliography [top]

Aeby, G.S., Work, T., Coles, S., and Lewis, T. 2006. Coral Disease Across the Hawaiian Archipelago. EOS, Transactions, American Geophysical Union 87(36): suppl.

Aronson, R.B. and Precht, W.F. 2001b. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25-38.

Bruno, J.F., Selig, E.R., Casey, K.S., Page, C.A., Willis, B.L., Harvell, C.D., Sweatman, H., and Melendy, A.M. 2007. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biology 5(6): e124.

Colgan, M.W. 1987. Coral Reef Recovery on Guam (Micronesia) After Catastrophic Predation by Acanthaster Planci. Ecology 68(6): 1592-1605.

Green, E.P. and Bruckner, A.W. 2000. The significance of coral disease epizootiology for coral reef conservation. Biological Conservation 96: 347-361.

Jacobson, D.M. 2006. Fine Scale Temporal and Spatial Dynamics of a Marshall Islands Coral Disease Outbreak: Evidence for Temperature Forcing. EOS, Transactions, American Geophysical Union 87(36): suppl.

Patterson, K.L., Porter, J.W., Ritchie, K.B., Polson, S.W., Mueller E., Peters, E.C., Santavy, D.L., Smith, G.W. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci 99: 8725-8730.

Porter, J.W., Dustan, P., Jaap, W.C., Patterson, K.L., Kosmynin, V., Meier, O.W., Patterson, M.E., and Parsons, M. 2001. Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460(1-3): 1-24.

Pratchett, M.S. 2007. Feeding preferences of Acanthaster planci (Echinodermata: Asteroidea) under controlled conditions of food availability. Pacific Science 61(1): 113-120.

Sutherland, K.P., Porter, J.W., and Torres, C. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine ecology progress series 266: 273-302.

Veron, J.E.N. 2000. Corals of the World. Australian Institute of Marine Science, Townsville.

Wallace, C.C. 1999. Staghorn Corals of the World: a revision of the coral genus Acropora. CSIRO, Collingwood.

Weil, E. 2004. Coral reef diseases in the wider Caribbean. In: E. Rosenberg and Y. Loya (eds), Coral Health and Diseases, pp. 35-68. Springer Verlag, NY.

Weil, E. 2006. Coral, Ocotocoral and sponge diversity in the reefs of the Jaragua National Park, Dominican Republic. Rev. Bio. Trop. 54(2): 423-443.

Wilkinson, C. 2004. Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville, Queensland, Australia.

Willis, B., Page, C and Dinsdale, E. 2004. Coral disease on the Great Barrier Reef. In: E. Rosenber and Y. Loya (eds), Coral Health and Disease, pp. 69-104. Springer-Verlag Berlin Heidelberg.

Wood, E.M. 1983. Reef Corals of the World: Biology and Field Guide. T.F.H. Publications Inc., Ltd., Hong Kong.


Citation: DeVantier, L., Hodgson, G., Huang, D., Johan, O., Licuanan, A., Obura, D., Sheppard, C., Syahrir, M. & Turak, E. 2008. Caulastrea connata. In: The IUCN Red List of Threatened Species 2008: e.T133287A3671439. . Downloaded on 24 July 2016.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided