22680186-1

Anas platyrhynchos 

Scope: Europe
Language: English
Status_ne_offStatus_dd_offStatus_lc_onStatus_nt_offStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Translate page into:

Taxonomy [top]

Kingdom Phylum Class Order Family
Animalia Chordata Aves Anseriformes Anatidae

Scientific Name: Anas platyrhynchos Linnaeus, 1758
Regional Assessments:
Common Name(s):
English Mallard, Common Mallard, Northern Mallard
French Canard colvert
Taxonomic Source(s): Cramp, S. and Simmons, K.E.L. (eds). 1977-1994. Handbook of the birds of Europe, the Middle East and Africa. The birds of the western Palearctic. Oxford University Press, Oxford.
Taxonomic Notes: Anas platyrhynchos and A. fulvigula (incorporating diazi) (del Hoyo and Collar 2014) were previously treated as A. platyrhynchos (incorporating diazi) and A. fulvigula following Sibley and Monroe (1990, 1993).

Assessment Information [top]

Red List Category & Criteria: Least Concern (Regional assessment) ver 3.1
Year Published: 2015
Date Assessed: 2015-03-31
Assessor(s): BirdLife International
Reviewer(s): Symes, A.
Facilitator/Compiler(s): Ashpole, J, Burfield, I., Ieronymidou, C., Pople, R., Wheatley, H. & Wright, L
Justification:
European regional assessment: Least Concern (LC)
EU27 regional assessment: Least Concern (LC)


At both European and EU27 scales this species has an extremely large range, and hence does not approach the thresholds for Vulnerable under the range size criterion (Extent of Occurrence 10% in ten years or three generations, or with a specified population structure). The population trend appears to be stable, and hence the species does not approach the thresholds for Vulnerable under the population trend criterion (30% decline over ten years or three generations).

For these reasons the species is evaluated as Least Concern within both Europe and the EU27.

Geographic Range [top]

Countries occurrence:
Native:
Albania; Armenia; Austria; Azerbaijan; Belarus; Belgium; Bosnia and Herzegovina; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Faroe Islands; Finland; France; Georgia; Germany; Greece; Greenland; Hungary; Iceland; Ireland; Italy; Latvia; Liechtenstein; Lithuania; Luxembourg; Macedonia, the former Yugoslav Republic of; Malta; Moldova; Montenegro; Netherlands; Norway; Poland; Portugal; Romania; Russian Federation (European Russia); Serbia; Slovakia; Slovenia; Spain (Canary Is.); Sweden; Switzerland; Turkey; Ukraine; United Kingdom
Vagrant:
Gibraltar; Svalbard and Jan Mayen
Additional data:
Continuing decline in area of occupancy (AOO):Unknown
Extreme fluctuations in area of occupancy (AOO):NoEstimated extent of occurrence (EOO) - km2:10300000
Continuing decline in extent of occurrence (EOO):UnknownExtreme fluctuations in extent of occurrence (EOO):No
Continuing decline in number of locations:Unknown
Extreme fluctuations in the number of locations:No
Upper elevation limit (metres):1000
Range Map:22680186-1

Population [top]

Population:The European population is estimated at 2,850,000-4,610,000 pairs, which equates to 5,700,000-9,220,000 mature individuals. The population in the EU27 is estimated at 1,700,000-2,910,000 pairs, which equates to 3,400,000-5,830,000 mature individuals. For details of national estimates, see the Supplementary Material.

Trend Justification:  In Europe and the EU27 the population size is estimated to be stable. For details of national estimates, see attached PDF.
For further information about this species, see 22680186_anas_platyrhynchos.pdf.
A PDF viewer such as Adobe Reader is required.
Current Population Trend:Stable
Additional data:
Number of mature individuals:5700000-9220000,7220000Continuing decline of mature individuals:Unknown
Extreme fluctuations:NoPopulation severely fragmented:No
Continuing decline in subpopulations:Unknown
Extreme fluctuations in subpopulations:NoAll individuals in one subpopulation:No

Habitat and Ecology [top]

Habitat and Ecology:The species occurs in almost every wetland type, although it generally avoids fast-flowing, oligotrophic (Carboneras and Kirwan 2014), deep, exposed, rough, rockbound waters and hard unvegetated areas such as rocky ground, sand dunes and artificial surfacing (Snow and Perrins 1998). It requires water less than 1 m deep for foraging (Snow and Perrins 1998) and shows a preference for freshwater habitats (Madge and Burn 1988). Habitats commonly frequented include flooded swampy woodlands, seasonal floodlands (Snow and Perrins 1998), wet grassy swamps and meadows, oxbow lakes (Flint et al. 1984), open waters with mudflats, banks or spits, irrigation networks, reservoirs, ornamental waters (Carboneras and Kirwan 2014), canals and sewage farms (Snow and Perrins 1998). During the winter the species may also be found in saline habitats along the coast (Madge and Burn 1988) where water is shallow, fairly sheltered and within sight of land (Snow and Perrins 1998). The species breeds between March and June although the exact timing varies with latitude (Madge and Burn 1988). The nest is a shallow depression (Snow and Perrins 1998) or bowl of vegetation that can be situated in many different locations such as within vegetation on the ground, in natural tree cavities (Carboneras and Kirwan 2014), under fallen dead wood, on tree stumps and even in abandoned nests of other species (Flint et al. 1984). Clutch size is generally nine to thirteen eggs. The species is omnivorous and opportunistic, feeding on seeds and the vegetative parts of aquatic and terrestrial plants, as well as terrestrial and aquatic invertebrates such as insects, molluscs, crustaceans, worms and occasionally amphibians and fish (Carboneras and Kirwan 2014). In temperate regions breeding populations of this species are sedentary or dispersive, often making local movements during severe weather (Scott and Rose 1996). Other populations are fully migratory (Kear 2005).
Systems:Terrestrial; Freshwater
Continuing decline in area, extent and/or quality of habitat:Unknown
Generation Length (years):6.6
Movement patterns:Full Migrant
Congregatory:Congregatory (and dispersive)

Threats [top]

Major Threat(s): The species is threatened by wetland habitat degradation and loss from pollution (e.g. petroleum (Grishanov 2006) and pesticide pollution (Kwon et al. 2004)), wetland drainage, peat-extraction, changing wetland management practices (e.g. decreased grazing and mowing in meadows leading to scrub over-growth) and the burning and mowing of reedbeds (Grishanov 2006). The species also suffers mortality as a result of lead shot ingestion (e.g. in Spain (Mateo et al. 1999) and France (Mondain-Monval et al. 2002)). It is also susceptible to duck virus enteritis (DVE) (Friend 2006), avian influenza (Melville and Shortridge 2006) and avian botulism (Rocke 2006) so may be threatened by future outbreaks of these diseases (although it may be able to withstand sporadic losses due to its high reproductive potential) (Rocke 2006). The species is predated by American Mink (Neovison vison) (Opermanis et al. 2001). The species is hunted throughout its range (Kear 2005) mainly for sport (Evans and Day 2002, Bregnballe et al. 2006, Mondain-Monval et al. 2006, Sorrenti et al. 2006). The eggs of this species were (and possibly still are) harvested in Iceland (Gudmundsson 1979).

Conservation Actions [top]

Conservation Actions: Conservation Actions Underway
CMS Appendix II. EU Birds Directive Annex II and III. Studies have revealed some of the species's requirements. Extensive grazing of wetland grasslands (c. 0.5 cows per hectare) was found to attract a higher abundance of the species in Hungary (Baldi et al. 2005). Studies in Danish coastal wetlands found that the spatial restriction of shore-based shooting was more successful at maintaining waterfowl population sizes than was the temporal restriction of shooting, and therefore that wildfowl reserves should incorporate shooting-free refuges that include adjacent marshland in order to ensure high waterfowl species diversity (Bregnballe et al. 2004). The cyclical removal of adult fish from an artificial waterbody (gravel pit) in the U.K. resulted in an increase in invertebrate food availability and an increase in the growth of submerged aquatic macrophytes, which in turn led to an increased use of the habitat for brood rearing by the species (Giles 1994). The removed fish (dead or alive) were sold to generate funds (Giles 1994). However, no conservation measures are currently targeted at this species.

Conservation Actions Proposed
The species is not threatened and does not require any immediate conservation action but is likely to benefit for conservation measures implemented for other wetland species.

Classifications [top]

5. Wetlands (inland) -> 5.1. Wetlands (inland) - Permanent Rivers/Streams/Creeks (includes waterfalls)
suitability:Suitable season:breeding major importance:No
5. Wetlands (inland) -> 5.1. Wetlands (inland) - Permanent Rivers/Streams/Creeks (includes waterfalls)
suitability:Suitable season:non-breeding major importance:No
5. Wetlands (inland) -> 5.4. Wetlands (inland) - Bogs, Marshes, Swamps, Fens, Peatlands
suitability:Suitable season:breeding major importance:No
5. Wetlands (inland) -> 5.4. Wetlands (inland) - Bogs, Marshes, Swamps, Fens, Peatlands
suitability:Suitable season:non-breeding major importance:No
5. Wetlands (inland) -> 5.5. Wetlands (inland) - Permanent Freshwater Lakes (over 8ha)
suitability:Suitable season:breeding major importance:No
5. Wetlands (inland) -> 5.5. Wetlands (inland) - Permanent Freshwater Lakes (over 8ha)
suitability:Suitable season:non-breeding major importance:No
5. Wetlands (inland) -> 5.7. Wetlands (inland) - Permanent Freshwater Marshes/Pools (under 8ha)
suitability:Suitable season:breeding major importance:No
5. Wetlands (inland) -> 5.7. Wetlands (inland) - Permanent Freshwater Marshes/Pools (under 8ha)
suitability:Suitable season:non-breeding major importance:No
5. Wetlands (inland) -> 5.14. Wetlands (inland) - Permanent Saline, Brackish or Alkaline Lakes
suitability:Suitable season:breeding major importance:No
5. Wetlands (inland) -> 5.14. Wetlands (inland) - Permanent Saline, Brackish or Alkaline Lakes
suitability:Suitable season:non-breeding major importance:No
5. Wetlands (inland) -> 5.17. Wetlands (inland) - Seasonal/Intermittent Saline, Brackish or Alkaline Marshes/Pools
suitability:Suitable season:breeding major importance:No
5. Wetlands (inland) -> 5.17. Wetlands (inland) - Seasonal/Intermittent Saline, Brackish or Alkaline Marshes/Pools
suitability:Suitable season:non-breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.1. Artificial/Aquatic - Water Storage Areas (over 8ha)
suitability:Suitable season:breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.1. Artificial/Aquatic - Water Storage Areas (over 8ha)
suitability:Suitable season:non-breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.2. Artificial/Aquatic - Ponds (below 8ha)
suitability:Suitable season:breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.2. Artificial/Aquatic - Ponds (below 8ha)
suitability:Suitable season:non-breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.3. Artificial/Aquatic - Aquaculture Ponds
suitability:Suitable season:breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.3. Artificial/Aquatic - Aquaculture Ponds
suitability:Suitable season:non-breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.6. Artificial/Aquatic - Wastewater Treatment Areas
suitability:Suitable season:breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.6. Artificial/Aquatic - Wastewater Treatment Areas
suitability:Suitable season:non-breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.7. Artificial/Aquatic - Irrigated Land (includes irrigation channels)
suitability:Suitable season:breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.7. Artificial/Aquatic - Irrigated Land (includes irrigation channels)
suitability:Suitable season:non-breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.9. Artificial/Aquatic - Canals and Drainage Channels, Ditches
suitability:Suitable season:breeding major importance:No
15. Artificial/Aquatic & Marine -> 15.9. Artificial/Aquatic - Canals and Drainage Channels, Ditches
suitability:Suitable season:non-breeding major importance:No

In-Place Research, Monitoring and Planning
  Action Recovery plan:No
  Systematic monitoring scheme:Yes
In-Place Land/Water Protection and Management
  Conservation sites identified:Yes, over entire range
  Occur in at least one PA:Yes
  Invasive species control or prevention:No
In-Place Species Management
  Successfully reintroduced or introduced beningly:No
  Subject to ex-situ conservation:No
In-Place Education
  Subject to recent education and awareness programmes:No
  Included in international legislation:Yes
  Subject to any international management/trade controls:No
5. Biological resource use -> 5.1. Hunting & trapping terrestrial animals -> 5.1.1. Intentional use (species is the target)
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

7. Natural system modifications -> 7.2. Dams & water management/use -> 7.2.7. Abstraction of ground water (agricultural use)
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Slow, Significant Declines ⇒ Impact score:Medium Impact: 6 
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

7. Natural system modifications -> 7.3. Other ecosystem modifications
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Slow, Significant Declines ⇒ Impact score:Medium Impact: 6 
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

8. Invasive and other problematic species, genes & diseases -> 8.1. Invasive non-native/alien species/diseases -> 8.1.2. Named species [ Neovison vison ]
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Slow, Significant Declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

8. Invasive and other problematic species, genes & diseases -> 8.2. Problematic native species/diseases -> 8.2.2. Named species [ Clostridium botulinum ]
♦ timing:Past, Likely to Return ♦ scope:Majority (50-90%) ♦ severity:Rapid Declines ⇒ Impact score:Past Impact 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

8. Invasive and other problematic species, genes & diseases -> 8.5. Viral/prion-induced diseases -> 8.5.2. Named species
♦ timing:Past, Likely to Return ♦ scope:Majority (50-90%) ♦ severity:Rapid Declines ⇒ Impact score:Past Impact 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

9. Pollution -> 9.2. Industrial & military effluents -> 9.2.1. Oil spills
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Slow, Significant Declines ⇒ Impact score:Medium Impact: 6 
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation
  • 2. Species Stresses -> 2.1. Species mortality

9. Pollution -> 9.3. Agricultural & forestry effluents -> 9.3.3. Herbicides and pesticides
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Slow, Significant Declines ⇒ Impact score:Medium Impact: 6 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality


♦  Food - human
 Local : ✓   National : ✓ 

♦  Pets/display animals, horticulture
 Local : ✓   National : ✓ 

♦  Sport hunting/specimen collecting
 Local : ✓   National : ✓ 

Bibliography [top]

Baldi, A., Batary, B. and Erdos, S. 2005. Effects of grazing intensity on bird assemblages and populations of Hungarian grasslands. Agriculture Ecosystems & Environment 108: 251-263.

Balmaki, B. and Barati, A. 2006. Harvesting status of migratory waterfowl in northern Iran: a case study from Gilan Province. In: Boere, G., Galbraith, C. and Stroud, D. (eds), Waterbirds around the world, pp. 868-869. The Stationary Office, Edinburgh, UK.

Brazil, M. 2009. Birds of East Asia: eastern China, Taiwan, Korea, Japan, eastern Russia. Christopher Helm, London.

Bregnballe, T.; Madsen, J., Rasmussen, P. A. F. 2004. Effects of temporal and spatial hunting control in waterbird reserves. Biological Conservation 119: 93-104.

Bregnballe, T.; Noer, H.; Christensen, T.K.; Clausen, P.; Asferg, T.; Fox, A.D.; Delany, S. 2006. Sustainable hunting of migratory waterbirds: the Danish approach. In: G. Boere, C. Galbraith and D. Stroud (eds), Waterbirds around the world, pp. 854-860. The Stationery Office, Edinburgh, U.K.

Brown, L.H., Urban, E.K. and Newman, K. 1982. The Birds of Africa, Volume I. Academic Press, London.

Delany, S. and Scott, D. 2006. Waterbird population estimates. Wetlands International, Wageningen, The Netherlands.

del Hoyo, J., Elliot, A. and Sargatal, J. 1992. Handbook of the Birds of the World, Vol. 1: Ostrich to Ducks. Lynx Edicions, Barcelona, Spain.

Evans, D.M. and Day, K.R. 2002. Hunting disturbance on a large shallow lake: the effectiveness of waterfowl refuges. Ibis 144(1): 2-8.

Flint, V.E.; Boehme, R.L.; Kostin, Y.V.; Kuznetsov, A.A. 1984. A field guide to birds of the USSR. Princeton University Press, Princeton, New Jersey.

Friend, M. 2006. Evolving changes in diseases of waterbirds. In: G. Boere, C. Galbraith and D. Stroud (eds), Waterbirds around the world, pp. 412-417. The Stationary Office, Edinburgh, U.K.

Giles, N. 1994. Tufted Duck (Aythya fuligula) habitat use and brood survival increases after fish removal from gravel pit lakes. Hydrobiologia 279/280: 387-392.

Grishanov, D. 2006. Conservation problems of migratory waterfowl and shorebirds and their habitats in the Kaliningrad region of Russia. In: G. Boere, C. Galbraith and D Stroud (eds), Waterbirds around the world, pp. 356. The Stationary Office, Edinburgh, U.K.

Gudmundsson, F. 1979. The past status and exploitation of the Myvatn waterfowl populations. Oikos 32(1-2): 232-249.

IUCN. 2015. The IUCN Red List of Threatened Species. Version 2015.1. Available at: www.iucnredlist.org. (Accessed: 28 May 2015).

Johnsgard, P.A. 1978. Ducks, geese and swans of the World. University of Nebraska Press, Lincoln and London.

Kear, J. 2005. Ducks, geese and swans volume 2: species accounts (Cairina to Mergus). Oxford University Press, Oxford, U.K.

Kwon, Y.K., Wee, S.H. and Kim, J.H. 2004. Pesticide Poisoning Events in Wild Birds in Korea from 1998 to 2002. Journal of Wildlife Diseases 40(4): 737-740.

Madge, S.; Burn, H. 1988. Wildfowl. Christopher Helm, London.

Mateo, R., Belliure, J., Dolz, J.C., Aguilar-Serrano, J.M. and Guitart, R. 1998. High prevalences of lead poisoning in wintering waterfowl in Spain. Archives of Environmental Contamination and Toxicology 35: 342-347.

Melville, D.S. and Shortridge, K.F. 2006. Migratory waterbirds and avian influenza in the East Asian-Australasian Flyway with particular reference to the 2003-2004 H5N1 outbreak. In: G. Boere, C. Galbraith and D. Stroud (eds), Waterbirds around the world, pp. 432-438. The Stationery Office, Edinburgh, U.K.

Mondain-Monval, J.Y., Defos du Rau, P., Mathon, N., Olivier, A. and Desnouhes, L. 2006. The monitoring of hunting bags and hunting effort in the Camargue, France. In: G. Boere, C. Galbraith and D. Stroud (eds), Waterbirds around the world, pp. 862-863. The Stationary Office, Edinburgh, U.K.

Mondain-Monval, J.Y., Desnouhes, L. and Taris, J.P. 2002. Lead shot ingestion in waterbirds in the Camargue, (France). Game and Wildlife Science 19(3): 237-246.

Opermanis, O., Mednis, A. and Bauga, I. 2001. Duck nests and predators: interaction, specialisation and possible management. Wildlife Biology 7(2): 87-96.

Rocke, T. E. 2006. The global importance of avian botulism. In: Boere, G.; Galbraith, C., Stroud, D. (ed.), Waterbirds around the world, pp. 422-426. The Stationary Office, Edinburgh, UK.

Scott, D. A.; Rose, P. M. 1996. Atlas of Anatidae populations in Africa and western Eurasia. Wetlands International, Wageningen, Netherlands.

Snow, D.W. and Perrins, C.M. 1998. The Birds of the Western Palearctic, Volume 1: Non-Passerines. Oxford University Press, Oxford.

Sokolov, L. V.; Gordienko, N. S. 2008. Has recent climate warming affected the dates of bird arrival to the Il'men Reserve in the Southern Urals? Russian Journal of Ecology 39: 56-62.

Sorrenti, M., Carnacina, L., Radice, D. and Costato, A. 2006. Duck harvest in the Po delta, Italy. In: G. Boere, C. Galbraith and D. Stroud (eds), Waterbirds around the world, pp. 864-865. The Stationary Office, Edinburgh, U.K.

Steele, B.B., Reitsma, L.R., Racine, C.H., Burson, S.L. III., Stuart, R. and Theberge, R. 1997. Different susceptibilities to white phosphorous poisoning among five species of ducks. Environmental Toxicology and Chemistry 16(11): 2275-2282.

Vähätalo, A. V.; Rainio, K.; Lehikoinen, A.; Lehikoinen, E. 2004. Spring arrival of birds depends on the North Atlantic Oscillation. Journal of Avian Biology 35: 210-216.


Citation: BirdLife International. 2015. Anas platyrhynchos. The IUCN Red List of Threatened Species 2015: e.T22680186A59959879. . Downloaded on 17 December 2017.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided