Status_ne_offStatus_dd_onStatus_lc_offStatus_nt_offStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
Animalia Cnidaria Anthozoa Scleractinia Acroporidae

Scientific Name: Acropora akajimensis
Species Authority: Veron, 1990

Assessment Information [top]

Red List Category & Criteria: Data Deficient ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor(s): Richards, Z., Delbeek, J.C., Lovell, E., Bass, D., Aeby, G. & Reboton, C.
Reviewer(s): Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
This species is recently described. Therefore there is very little information available on its distribution, abundance, habitat preferences, and susceptibility to threats. This species is listed as Data Deficient. However, this species could fall into a threatened category if more information was known. Research on these aspects of this species’ ecology is recommended. This assessment should be re-evaluated in 10 years to include addition information and to determine the effects of continued or increased threats from climate change and ocean acidification.

Geographic Range [top]

Range Description:This species is found in the central Indo-Pacific, Southeast Asia, Japan and the East China Sea, Raja Ampats (West Papaua, Indonesia) and the Solomon Islands. There is also a record from New Caledonia (Fenner, pers. comm.).
Countries occurrence:
Native:
Indonesia; Japan; New Caledonia; Philippines; Taiwan, Province of China
FAO Marine Fishing Areas:
Native:
Pacific – northwest; Pacific – western central
Lower depth limit (metres):20
Upper depth limit (metres):1
Range Map:Click here to open the map viewer and explore range.

Population [top]

Population:This species is occasionally locally common, but is usually rare.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined globally.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. See the Supplementary Material for further details on population decline and generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Current Population Trend:Decreasing
Additional data:
Population severely fragmented:No

Habitat and Ecology [top]

Habitat and Ecology:This species occurs on shallow reef slopes and flats. This species is found from 0.5-20 m.
Systems:Marine

Threats [top]

Major Threat(s): Major threats are global warming and predation. Members of this genus have a low resistance and low tolerance to bleaching and disease, and are slow to recover. Acanthaster planci, the crown-of-thorns starfish, has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). This species is has a plate form which is preferred by COTS.

Acropora are in the top three genera collected for the aquarium trade. It is not known to what extent this particular species is collected, or the extent of threat this presents.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: All corals are listed on CITES Appendix II. Parts of the species’ range fall within Marine Protected Areas.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Having timely access to national-level trade data for CITES analysis reports would be valuable for monitoring trends this species. The species is targeted by collectors for the aquarium trade and fisheries management is required for the species, e.g., MPAs, quotas, size limits, etc. Consideration of the suitability of species for aquaria should also be included as part of fisheries management, and population surveys should be carried out to monitor the effects of harvesting.

Classifications [top]

9. Marine Neritic -> 9.8. Marine Neritic - Coral Reef -> 9.8.3. Foreslope (Outer Reef Slope)
suitability: Suitable  
9. Marine Neritic -> 9.8. Marine Neritic - Coral Reef -> 9.8.4. Lagoon
suitability: Suitable  
1. Land/water protection -> 1.1. Site/area protection
2. Land/water management -> 2.1. Site/area management
2. Land/water management -> 2.3. Habitat & natural process restoration
3. Species management -> 3.2. Species recovery
3. Species management -> 3.4. Ex-situ conservation -> 3.4.1. Captive breeding/artificial propagation
3. Species management -> 3.4. Ex-situ conservation -> 3.4.2. Genome resource bank

In-Place Research, Monitoring and Planning
In-Place Land/Water Protection and Management
  Occur in at least one PA:Yes
In-Place Species Management
In-Place Education
1. Residential & commercial development -> 1.1. Housing & urban areas
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Residential & commercial development -> 1.2. Commercial & industrial areas
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Residential & commercial development -> 1.3. Tourism & recreation areas
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

4. Transportation & service corridors -> 4.3. Shipping lanes
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

5. Biological resource use -> 5.4. Fishing & harvesting aquatic resources -> 5.4.1. Intentional use: (subsistence/small scale)
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

5. Biological resource use -> 5.4. Fishing & harvesting aquatic resources -> 5.4.3. Unintentional effects: (subsistence/small scale)
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

5. Biological resource use -> 5.4. Fishing & harvesting aquatic resources -> 5.4.6. Motivation Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

6. Human intrusions & disturbance -> 6.1. Recreational activities
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.2. Species disturbance

8. Invasive & other problematic species & genes -> 8.1. Invasive non-native/alien species -> 8.1.1. Unspecified species
♦ timing: Ongoing    
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality
  • 2. Species Stresses -> 2.2. Species disturbance
  • 2. Species Stresses -> 2.3. Indirect species effects -> 2.3.2. Competition

9. Pollution -> 9.1. Domestic & urban waste water -> 9.1.3. Type Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.2. Industrial & military effluents -> 9.2.3. Type Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.3. Agricultural & forestry effluents -> 9.3.2. Soil erosion, sedimentation
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.3. Agricultural & forestry effluents -> 9.3.4. Type Unknown/Unrecorded
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.5. Air-borne pollutants -> 9.5.3. Ozone
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

11. Climate change & severe weather -> 11.3. Temperature extremes
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation
  • 2. Species Stresses -> 2.1. Species mortality
  • 2. Species Stresses -> 2.2. Species disturbance
  • 2. Species Stresses -> 2.3. Indirect species effects -> 2.3.8. Other

11. Climate change & severe weather -> 11.4. Storms & flooding
♦ timing: Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Research -> 1.1. Taxonomy
1. Research -> 1.2. Population size, distribution & trends
1. Research -> 1.3. Life history & ecology
1. Research -> 1.5. Threats
1. Research -> 1.6. Actions
3. Monitoring -> 3.1. Population trends

♦  Pets/display animals, horticulture
 International : ✓ 

Bibliography [top]

Aeby, G.S., Work, T., Coles, S., and Lewis, T. 2006. Coral Disease Across the Hawaiian Archipelago. EOS, Transactions, American Geophysical Union 87(36): suppl.

Aronson, R.B. and Precht, W.F. 2001b. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25-38.

Bruno, J.F., Selig, E.R., Casey, K.S., Page, C.A., Willis, B.L., Harvell, C.D., Sweatman, H., and Melendy, A.M. 2007. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biology 5(6): e124.

Colgan, M.W. 1987. Coral Reef Recovery on Guam (Micronesia) After Catastrophic Predation by Acanthaster Planci. Ecology 68(6): 1592-1605.

Green, E.P. and Bruckner, A.W. 2000. The significance of coral disease epizootiology for coral reef conservation. Biological Conservation 96: 347-361.

IUCN. 2008. 2008 IUCN Red List of Threatened Species. Available at: http://www.iucnredlist.org. (Accessed: 5 October 2008).

Jacobson, D.M. 2006. Fine Scale Temporal and Spatial Dynamics of a Marshall Islands Coral Disease Outbreak: Evidence for Temperature Forcing. EOS, Transactions, American Geophysical Union 87(36): suppl.

Patterson, K.L., Porter, J.W., Ritchie, K.B., Polson, S.W., Mueller E., Peters, E.C., Santavy, D.L., Smith, G.W. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci 99: 8725-8730.

Porter, J.W., Dustan, P., Jaap, W.C., Patterson, K.L., Kosmynin, V., Meier, O.W., Patterson, M.E., and Parsons, M. 2001. Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460(1-3): 1-24.

Pratchett, M.S. 2007. Feeding preferences of Acanthaster planci (Echinodermata: Asteroidea) under controlled conditions of food availability. Pacific Science 61(1): 113-120.

Stimson, J., Sakai, K., and Sembali, H. 2002. Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleacing-induced mortality. Coral reefs 21: 409-421.

Sutherland, K.P., Porter, J.W., and Torres, C. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine ecology progress series 266: 273-302.

Veron, J.E.N. 2000. Corals of the World. Australian Institute of Marine Science, Townsville.

Wallace, C.C. 1999. Staghorn Corals of the World: a revision of the coral genus Acropora. CSIRO, Collingwood.

Weil, E. 2004. Coral reef diseases in the wider Caribbean. In: E. Rosenberg and Y. Loya (eds), Coral Health and Diseases, pp. 35-68. Springer Verlag, NY.

Weil, E. 2006. Coral, Ocotocoral and sponge diversity in the reefs of the Jaragua National Park, Dominican Republic. Rev. Bio. Trop. 54(2): 423-443.

Wilkinson, C. 2004. Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville, Queensland, Australia.

Willis, B., Page, C and Dinsdale, E. 2004. Coral disease on the Great Barrier Reef. In: E. Rosenber and Y. Loya (eds), Coral Health and Disease, pp. 69-104. Springer-Verlag Berlin Heidelberg.


Citation: Richards, Z., Delbeek, J.C., Lovell, E., Bass, D., Aeby, G. & Reboton, C. 2008. Acropora akajimensis. In: The IUCN Red List of Threatened Species 2008: e.T133655A3850335. . Downloaded on 29 April 2016.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided