Map_thumbnail_large_font

Cantharellus noumeae

Status_ne_offStatus_dd_offStatus_lc_offStatus_nt_offStatus_vu_offStatus_en_onStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
ANIMALIA CNIDARIA ANTHOZOA SCLERACTINIA FUNGIIDAE

Scientific Name: Cantharellus noumeae
Species Authority: Hoeksema and Best 1984

Assessment Information [top]

Red List Category & Criteria: Endangered B2ab(iii) ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor(s): Hoeksema, B., Wood, E., Rogers, A. & Quibilan, M.
Reviewer(s): Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
This species is endemic to New Caledonia with a restricted range size, and is naturally rare. Threats include habitat degradation due to mining and associated activities and urbanisation. The AOO is calculated as approximately 225 km2. Therefore this species is listed as Endangered under B criterion with less than 5 locations and decline in habitat quality.

Geographic Range [top]

Range Description: This species is found in New Caledonia. It is also reported from Papua New Guinea, Milne Bay Provence (Allan et al. 2003) but it is unconfirmed and not included in the current distribution.

There are Miocene fossil records form the species from Indonesia (Hoeksema 1989).
Countries:
Native:
Australia; Indonesia; New Caledonia; Papua New Guinea
FAO Marine Fishing Areas:
Native:
Indian Ocean – eastern; Pacific – western central
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: This is a rare species and has a restricted range, endemic to New Caledonia.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Population Trend: Unknown

Habitat and Ecology [top]

Habitat and Ecology: This species is found in deep water close to sediment in sheltered bays. The maximum size is 7cm diameter. It is an attached stalked species (Hoeksema and Best 1984). This species is found from 10-20 m.
Systems: Marine

Threats [top]

Major Threat(s): The main threat to this species is mining activities causing sedimentation and habitat degradation.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: Recommended conservation measures include specific localised habitat protection and awareness raising in the region.

All corals are listed on CITES Appendix II. Parts of the species’ range fall within Marine Protected Areas.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Bibliography [top]

Aeby, G.S., Work, T., Coles, S., and Lewis, T. 2006. Coral Disease Across the Hawaiian Archipelago. EOS, Transactions, American Geophysical Union 87(36): suppl.

Allen, G.R., Kinch, J.P., McKenna, S.A., Seeto, P. 2003. A Rapid Marine Biodiversity Assessment of Milne Bay Province, Papua New Guinea Survey II(2000). RAP Bulletin of Biological Assessment 29. Conservation International, Washington, DC USA.

Aronson, R.B. and Precht, W.F. 2001 b. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25-38.

Bruno, J.F., Selig, E.R., Casey, K.S., Page, C.A., Willis, B.L., Harvell, C.D., 2007. Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks Sweatman, H., and Melendy, A.M. PLoS Biol 5(6): e124.

Colgan, M.W. 1987. Coral Reef Recovery on Guam (Micronesia) After Catastrophic Predation by Acanthaster Planci. Ecology 68(6): 1592-1605.

Green, E.P. and Bruckner, A.W. 2000. The significance of coral disease epizootiology for coral reef conservation. Biological Conservation 96: 347-361.

Hoeksema, B.W. 1989. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia:Fungiidae). Zoologische Verhandelingen Leiden 254: 1-295.

Hoeksema, B.W. and Best, M.B. 1984. Cantharelles noumeae (gen. nov., spec. nov.) a new Scleractinian coral (Fungiidae) from New Caldonia. Zoologische Mededelingen 58: 323-328.

IUCN. 2008. 2008 IUCN Red List of Threatened Species. Available at: http://www.iucnredlist.org. (Accessed: 5 October 2008).

Jacobson, D.M. 2006. Fine Scale Temporal and Spatial Dynamics of a Marshall Islands Coral Disease Outbreak: Evidence for Temperature Forcing. EOS, Transactions, American Geophysical Union 87(36): suppl.

Patterson, K.L., Porter, J.W., Ritchie, K.B., Polson, S.W., Mueller E., Peters, E.C., Santavy, D.L., Smith, G.W. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci 99: 8725-8730.

Porter, J.W., Dustan, P., Jaap, W.C., Patterson, K.L., Kosmynin, V., Meier, O.W., Patterson, M.E., and Parsons, M. 2001. Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460(1-3): 1-24.

Pratchett, Morgan S. 2007. Feeding Preferences of Acanthaster planci (Echinodermata: Asteroidea) under Controlled Conditions of Food Availability. Pacific Science 61(1): 113-120.

Sutherland, K.P., Porter, J.W., and Torres, C. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine ecology progress series 266: 273-302.

Wallace, C. C. 1999. Staghorn Corals of the World: a revison of the coral genus Acropora. CSIRO, Collingwood.

Weil, E. 2004. Coral reef diseases in the wider Caribbean. In: E. Rosenberg and Y. Loya (eds), Coral Health and Diseases, pp. 35-68. Springer Verlag, NY.

Weil, E. 2006. Coral, Ocotocoral and sponge diversity in the reefs of the Jaragua National Park, Dominican Republic. Rev. Bio. Trop. 54(2): 423-443.

Wilkinson, C. 2004. Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville, Queensland, Australia.

Willis, B., Page, C and E. Dinsdale. 2004. Coral disease on the Great Barrier Reef. In: E. Rosenber and Y. Loya (eds), Coral Health and Disease, pp. 69-104. Springer-Verlag Berlin Heidelberg.


Citation: Hoeksema, B., Wood, E., Rogers, A. & Quibilan, M. 2008. Cantharellus noumeae. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 19 September 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please fill in the feedback form so that we can correct or extend the information provided