Map_thumbnail_large_font

Dichocoenia stokesii

Status_ne_offStatus_dd_offStatus_lc_offStatus_nt_offStatus_vu_onStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
ANIMALIA CNIDARIA ANTHOZOA SCLERACTINIA MEANDRINIDAE

Scientific Name: Dichocoenia stokesii
Species Authority: Milne Edwards and Haime 1848
Common Name(s):
English Elliptical Star Coral

Assessment Information [top]

Red List Category & Criteria: Vulnerable A4c ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor(s): Aronson, R., Bruckner, A., Moore, J., Precht, B. & E. Weil
Reviewer(s): Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
This species is widespread in the Caribbean and common throughout its range. However, it is particularly susceptible to bleaching, disease, sedimentation, and extensive reduction of coral reef habitat due to a combination of threats. Specific population trends are unknown but population reduction can be inferred from declines in habitat quality based on the combined estimates of both destroyed reefs and reefs at the critical stage of degradation within its range (Wilkinson 2004). Its threat susceptibility increases the likelihood of being lost within one generation in the future from reefs at a critical stage. Therefore, the estimated habitat degradation and loss of 38% over three generation lengths (30 years) is the best inference of population reduction and meets the threshold for Vulnerable under Criterion A4c. It will be important to reassess this species in 10 years time because of predicted threats from climate change and ocean acidification.

Geographic Range [top]

Range Description: This species occurs in the Caribbean, Gulf of Mexico, Florida (including the Florida Middle Grounds), the Bahamas, and Bermuda.
Countries:
Native:
Anguilla; Antigua and Barbuda; Bahamas; Barbados; Belize; Bermuda; Bonaire, Sint Eustatius and Saba (Saba, Sint Eustatius); Cayman Islands; Colombia; Costa Rica; Cuba; Curaçao; Dominica; Dominican Republic; Grenada; Guadeloupe; Haiti; Honduras; Jamaica; Mexico; Montserrat; Nicaragua; Panama; Saint Barthélemy; Saint Kitts and Nevis; Saint Lucia; Saint Martin (French part); Saint Vincent and the Grenadines; Sint Maarten (Dutch part); Trinidad and Tobago; Turks and Caicos Islands; United States; United States Minor Outlying Islands; Venezuela, Bolivarian Republic of; Virgin Islands, British
FAO Marine Fishing Areas:
Native:
Atlantic – western central
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: This species is common, and may be locally abundant in certain habitats and localities.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is particularly susceptible to bleaching, disease, and other threats and therefore population decline is based on both the percentage of destroyed reefs and critical reefs that are likely to be destroyed within 20 years (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on population decline and generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Population Trend: Decreasing

Habitat and Ecology [top]

Habitat and Ecology: This species is found in back and fore reef environments, rocky reefs, lagoon habitats, spur and groove formations, channels, and sometimes at the base of the reef, from 2-72 m. Hemispherical heads are more abundant on shallow exposed reefs from 5-20 m (Goreau and Wells, 1967; E. Weil. pers. comm.).
Systems: Marine

Threats [top]

Major Threat(s): This species is highly susceptible to white plague and has experienced localized mass mortalities since 1995 in Florida (Richardson et al. 1998). There was no evidence of coral recruitment in the seven years following the epizootic, and D. stokesii populations have continued to decline. The colony size-frequency distribution pattern on these reefs changed over this time period, with the D. stokesii population exhibiting a trend to domination by large colonies, suggesting that the remaining population, while growing, is no longer reproducing (Richardson and Voss, 2005). The species is also susceptible to black band disease, bleaching, high sedimentation, and damage by storms.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: In the US, it is present in many MPAs, including Florida Keys National Marine Sanctuary, Biscayne N.P., Dry Tortugas National Park, Buck Island Reef National Monument and Flower Garden Banks National Marine Sanctuary. Also present in Hol Chan Marine Reserve (Belize), Exuma Cays Land and Sea Park (Bahamas). In US waters, it is illegal to harvest corals for commercial purposes. At least in this species, from Florida, a causative agent for white plague has been identified (Richardson et al. 1998), which could have relevance since so little is known of disease etiology. Further taxonomic work is required to clarify the status of both Dichocoenia species. (Aronson, R., Precht, W., Moore, J., Weil, E., and Bruckner, A. pers. comm.)

All corals are listed on CITES Appendix II.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Bibliography [top]

Aeby, G.S., Work, T., Coles, S., and Lewis, T. 2006. Coral Disease Across the Hawaiian Archipelago. EOS, Transactions, American Geophysical Union 87(36): suppl.

Aronson, R.B. and Precht, W.F. 2001 b. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25-38.

Bruno, J.F., Selig, E.R., Casey, K.S., Page, C.A., Willis, B.L., Harvell, C.D., 2007. Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks Sweatman, H., and Melendy, A.M. PLoS Biol 5(6): e124.

Colgan, M.W. 1987. Coral Reef Recovery on Guam (Micronesia) After Catastrophic Predation by Acanthaster Planci. Ecology 68(6): 1592-1605.

Goreau, T.F. and Wells, J.W. 1967. The shallow-water Scleractinia of Jamaica: Revised list of species and their vertical distribution range. Bulletin of Marine Science 17: 442-453.

Green, E.P. and Bruckner, A.W. 2000. The significance of coral disease epizootiology for coral reef conservation. Biological Conservation 96: 347-361.

Jacobson, D.M. 2006. Fine Scale Temporal and Spatial Dynamics of a Marshall Islands Coral Disease Outbreak: Evidence for Temperature Forcing. EOS, Transactions, American Geophysical Union 87(36): suppl.

Patterson, K.L., Porter, J.W., Ritchie, K.B., Polson, S.W., Mueller E., Peters, E.C., Santavy, D.L., Smith, G.W. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci 99: 8725-8730.

Porter, J.W., Dustan, P., Jaap, W.C., Patterson, K.L., Kosmynin, V., Meier, O.W., Patterson, M.E., and Parsons, M. 2001. Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460(1-3): 1-24.

Richardson, L.L. and Voss, J.D. 2005. Changes in a coral population on reefs of the northern Florida Keys following a coral disease epizootic. Marine Ecology Progress Series 297: 147-156.

Richardson L.L, Goldberg, W.M., Kuta, K.G., Aronson, R.B., Smith, G.W., Richie, K.B., Halas, J.C., Feingold, J.C and Miller, S.L. 1998. Florida’s mystery coral-killer identified. Nature 392: 557-558.

Sutherland, K.P., Porter, J.W., and Torres, C. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine ecology progress series 266: 273-302.

Veron, J.E.N. 2000. Corals of the World, Volume 2. Australian Institute of Marine Science, Townsville MC, Australia.

Wallace, C. C. 1999. Staghorn Corals of the World: a revison of the coral genus Acropora. CSIRO, Collingwood.

Weil, E. 2003. The corals and coral reefs of Venezuela. In: Jorge Cortes (ed.), Latin American Coral Reefs, Elseview Science B.V.

Weil, E. 2004. Coral reef diseases in the wider Caribbean. In: E. Rosenberg and Y. Loya (eds), Coral Health and Diseases, pp. 35-68. Springer Verlag, NY.

Weil, E. 2006. Coral, Ocotocoral and sponge diversity in the reefs of the Jaragua National Park, Dominican Republic. Rev. Bio. Trop. 54(2): 423-443.

Wilkinson, C. 2004. Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville, Queensland, Australia.

Willis, B., Page, C and E. Dinsdale. 2004. Coral disease on the Great Barrier Reef. In: E. Rosenber and Y. Loya (eds), Coral Health and Disease, pp. 69-104. Springer-Verlag Berlin Heidelberg.


Citation: Aronson, R., Bruckner, A., Moore, J., Precht, B. & E. Weil 2008. Dichocoenia stokesii. The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Downloaded on 19 December 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided