Panthera onca 

Scope: Global
Language: English
Status_ne_offStatus_dd_offStatus_lc_offStatus_nt_onStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Translate page into:

Taxonomy [top]

Kingdom Phylum Class Order Family
Animalia Chordata Mammalia Carnivora Felidae

Scientific Name: Panthera onca (Linnaeus, 1758)
Common Name(s):
English Jaguar
Spanish Otorongo, Tigre, Tigre Americano, Tigre mariposo, Tigre Real, Yaguar, Yaguareté
Synonym(s):
Felis onca Linnaeus, 1758
Taxonomic Notes: The status of the subspecies is unclear. Although eight subspecies have been recognized (Seymour 1989), morphological and genetic analyses do not support the existence of discrete subspecies (Larson 1997, Eizirik et al. 2001, Ruiz-Garcia et al. 2006). While not elevating the regional differences to the subspecies level, Eizirk et al. (2001) found evidence for four incompletely isolated phylogeographic groups: Mexico and Guatemala, southern Central America, northern South America, and South America south of the Amazon River. Similarly, Ruiz-Garcia et al. (2006) found that the Andes Mountains incompletely isolates Jaguar populations in Colombia.

Assessment Information [top]

Red List Category & Criteria: Near Threatened ver 3.1
Year Published: 2017
Date Assessed: 2016-08-05
Assessor(s): Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R. & Harmsen, B.
Reviewer(s): Nowell, K., Schipper, J., Breitenmoser-Würsten, C., Ceballos, G., González-Maya, J.F., Medellín, R., De La Torre, A., Hunter, L., Lanz, T. & Breitenmoser, U.
Contributor(s): Amit, R., Bustamante, A., Calderón, A.P., Campos, C., Carvalho Jr, E., Castañeda, F., Paula, R.C., de Oliveira, T., De Thoisy, B., Di Bitetti, M., Díaz-Santos, F., Espinosa, S., Ferraz, K.M.P.M.B., Garcia, R., Giordano, A., Hernández, S., Hidalgo-Mihart, M.G., Hoogesteijn, R., Jedrzejewski, W., Lopez-Gonzalez, C.A., Maffei, L., Mcnab, R., Mena, J.L., Morato, R., Moreno, R., Nuñez, R., Olmos, M., Pacheco, V., Paemelaere, E., Paviolo, A., Polisar, J., Rosa-Rosa, O., Samudio Jr, R.S., Tortato, F., Wallace, R., de Angelo, C., Zapata-Ríos, G. & Zúñiga, A.
Justification:
Classify as Near Threatened, due to a suspected 20-25% decline over the past three generations (21 years) in area of occupancy, extent of occurrence, and habitat quality, along with actual or potential levels of exploitation. Given the inherent difficulty of assessing this species, the normally low density with which it occupies the landscape and the effects that small population and habitat degradations can have on the species, our minimum assessment of population decrease could be a significant underestimate.

Since the previous Red List assessment in 2008, the threats to Jaguars have continued or intensified. The first expert mapping of Jaguar range took place in 2002 (Sanderson et al. 2002), and the resulting map was used for the 2008 Red List assessment. Today, more is known about Jaguar distribution and abundance, allowing us to retrospectively classify areas as Jaguar range in 2015 that were previously identified as non-range or gaps in knowledge (Supplementary Material Figure 1). The 2015 mapping exercise also reflects updates to range recommended by Jaguar experts, with sufficient evidence (i.e., tracks, camera-trap photos, sightings of live or dead animals) to warrant inclusion/exclusion of range. The updated range indicates increasing fragmentation of Jaguar populations, particularly in eastern and southeastern Brazil, northern Venezuela and the Maya Forest (Selva Maya) of Mexico and Guatemala. Comparing 2015 Jaguar range to the extent of “known” range from the 2002 exercise, thereby controlling for the difference in knowledge extent, there is a 20.0% decline in Jaguar range over the past fourteen years (2002-2015), from 8.77 million km² to 7.02 million km² (Figure 2 in the Supplementary Material). With a more robust range map from which to begin the next assessment, the species will likely qualify for VU in the near future.

With a generation length of 6.84 years, we suspect at least a 20-25% loss in mature individuals over the past 21 years (three generations) because there are documented population declines together with habitat loss for most of the range countries (Ceballos et al. 2011, Costa et al. 2005, Payán et al. 2013b, Wallace et al. 2013, Espinosa et al. 2016, García-Anleu et al. 2016, González-Maya et al. 2016, Hoogesteijn et al. 2016, Maffei et al. 2016, Mora et al. 2016, Moreno et al. 2016, Payán et al. 2016, Chávez et al. 2016, Olsoy et al. 2016, de Azevedo et al. 2016, Di Bitetti et al. 2016, Díaz-Santos et al. 2016, Paviolo et al. 2016, Jedrzejewski et al. 2016). Connectivity among Jaguar populations is being lost at local and regional scales (de la Torre et al. 2017a, Olsoy et al. 2016); isolated populations have fewer individuals and are more prone to local extinctions (Ceballos et al. in press). Jaguar-livestock conflict is a serious threat to Jaguar survival and reported throughout their range (Hoogesteijn and Hoogesteijn 2011, Quigley et al. 2015, de la Torre et al. 2016). Even in nominally protected areas, Jaguars often suffer from human impacts such as illegal hunting (Quigley and Crawshaw Jr 1992, Medellín et al. 2002, Sollmann et al. 2008, Ceballos et al. 2011, Payán et al. 2013a, Petracca et al. 2014).
For further information about this species, see 15953_Panthera_onca.pdf.
A PDF viewer such as Adobe Reader is required.
Previously published Red List assessments:

Geographic Range [top]

Range Description:The Jaguar is the largest cat of the Americas, and the only living representative of the genus Panthera in the New World (Nowell and Jackson 1996). Historically it ranged from the southwestern US (where there are still some vagrants close to the Mexican border) through the Amazon basin to the Rio Negro in Argentina (McCain and Childs 2008, Di Bitetti et al. 2016). Its extent of occurrence (EOO) (updated with the collaboration of 44 experts—see the lists of Assessors and Contributors and the Assessment Rationale section for a thorough description) is estimated at 9.02 million km², with its stronghold the rainforest of the Amazon basin, which comprises 57% of its total EOO. The Jaguar has been virtually eliminated from much of the drier northern parts of its range—Arizona and New Mexico in the United States, and extreme northern Sonora state in Mexico—( Johnson and Van Pelt 2016), as well as northern Brazil, the pampas scrub grasslands of Argentina and throughout Uruguay (de Azevedo et al. 2016, Di Bitetti et al. 2016, Pereira-Garbero and Sappa 2016). In 2002, Jaguars were estimated to occupy only about 46% of its historic range (Sanderson et al. 2002). With our improved knowledge of Jaguar range (see the Assessment Rationale and Figure 1 in the Supplementary Material), this percentage is set at 51% currently.

Sanderson et al. (2002) defined the most important areas for conservation of viable Jaguar populations (Jaguar Conservation Units or JCUs). These 51 areas cover 44.49 million km², or 49% of Jaguar range according to present calculations.
For further information about this species, see 15953_Panthera_onca.pdf.
A PDF viewer such as Adobe Reader is required.
Countries occurrence:
Native:
Argentina; Belize; Bolivia, Plurinational States of; Brazil; Colombia; Costa Rica; Ecuador; French Guiana; Guatemala; Guyana; Honduras; Mexico; Nicaragua; Panama; Paraguay; Peru; Suriname; United States; Venezuela, Bolivarian Republic of
Regionally extinct:
El Salvador; Uruguay
Additional data:
Upper elevation limit (metres):3000
Range Map:Click here to open the map viewer and explore range.

Population [top]

Population:Historic assessment of Jaguar viability
High chance of survival: Sanderson et al. (2002) estimated that populations in 70% of the Jaguar range (over 6 million km²) had a high probability for survival. Most of that area consists of the Amazon Basin rainforest, and adjoining areas of the Pantanal and Gran Chaco (Torres et al. 2007). Other areas considered by Sanderson et al. (2002) to have a high probability for long-term Jaguar persistence included tropical moist lowland forest in Mesoamerica (the Selva Maya of Guatemala, Mexico and Belize) and a narrow strip of the Choco-Darien of Panama and Colombia to northern Honduras.

Medium chance of survival: Sanderson et al. (2002) estimated that Jaguar populations in 18% of the Jaguar range (1.6 million km²) had a medium probability of long-term survival. These areas are generally adjacent to the areas considered to have a high-probability probability of survival and include a large portion of the northern Cerrado, most of the Venezuelan and Colombian llanos, and the northern part of Colombia on the Caribbean coast. In Central America and Mexico, they include the highlands of Costa Rica and Panama, southern Mexico, and the two eastern mountain ranges of Mexico, Sierra de Taumalipas and the Sierra Madre Oriental.

Low chance of survival: Sanderson et al. (2002) classified the remainder of Jaguar range (12%) as having a low probability for Jaguar survival, and of most urgent conservation concern. These areas include the Atlantic Tropical Forest and Cerrado of Brazil; parts of the Chaco in northern Argentina; the Gran Sabana of northern Brazil, Venezuela and Guyana; parts of the coastal dry forest in Venezuela; and the remaining range in Central America and Mexico.

Current assessment of Jaguar populations
Mexico: Jaguar densities in Mexico have been estimated from 0.75 to 6 adults per 100 km² (Ceballos et al. 2011, Chávez et al. 2016). The Jaguar population in the Selva Maya in the Yucatan Peninsula in Mexico was estimated in 2000 individuals (Ceballos et al. in press, Rodriguez-Soto et al. 2013). In the Greater Lacadona Ecosystem in southern Mexico, Jaguar density was estimated at 1.7-4.6/100 km², with an estimated population of 62 to 168 Jaguars within the protected areas of this region (de la Torre and Medellín 2011). Overall, Mexico’s national Jaguar census estimated at 4,000-5,000 individuals in 2011 (Ceballos et al. in press). The northern and central areas of Mexico are however becoming increasingly isolated with Jaguars disappearing where they were previously still detected (Grigione et al. 2009, Rosas-Rosas and Bender 2012).

Central America: Estimates of Jaguar density from Mesoamerica from 27 studies conducted from 2000 to 2010 range from 0.74 to 11.2 /100 km², however most of the studies did not cover the minimum area to ensure unbiased density estimates (Maffei et al. 2011). Nevertheless, across these sites density estimates were higher in tropical moist forest than in tropical montane forest or deciduous forest, and higher in national parks compared to those from other multiple use areas (Maffei et al. 2011). Densities in the Belizean Selva Maya rainforest were estimated at 7.5-8.8/100 km² (Silver et al. 2004). Jaguar density estimates in the protected lowland moist tropical forest of the Cockscomb Basin Wildlife Sanctuary in Belize range from 3.5 (+/- SE = 0.7) to 11.0 (+/- 3.1)/100 km² (Harmsen et al. 2010). Jaguar density was found to decline across the human-influenced landscape, a mosaic of unprotected forest, savannah, agriculture and settlements with distance from the protected forest (Foster 2008). The Talamanca Mountains of Costa Rica and Panama support a Jaguar population, but the probability of long-term persistence is medium to low (Gonzalez-Maya et al. 2007). Similarly the Jaguar populations located in protected areas in Guatemala, Honduras and Nicaragua are under a great pressure from deforestation and hunting (Petracca et al. 2014).

South America: Jaguar density in the Brazilian Pantanal has been estimated as 6.6-6.7 /100 km², or 10.3-11.7/100 km² depending on the method used (telemetry versus camera traps, respectively, Soislao and Cavalcanti (2006). In the Bolivian Amazon, Jaguar density was estimated at 2.8/100 km² (Madidi National Park Silver et al. 2004), and in the Colombian Amazon, Jaguar density was estimated at 4.5/100 km² and 2.5/100 km² (Amacayacu National Park and unprotected areas respectively; Payan 2008). Estimates of Jaguar density are 2/100 km² in the savannas of the Brazilian Cerrado, 3.5/100 km² in the semiarid scrub of the Caatinga, and 2.2/100 km² in the Atlantic Forest (Silveira 2004), and 2.2-5 per 100 km² in the Bolivian Gran Chaco (Maffei et al. 2004). The Atlantic Forest subpopulation in Brazil has been estimated at 200+/- 80 adults (Leite et al. 2002). Jaguar populations in the Chaco region of northern Argentina and Brazil, and the Brazilian Caatinga, are low-density and highly threatened by livestock ranching and persecution (Altrichter et al. 2006, T. de Oliveira pers. comm. 2008).

Historic methodological biases
Unfortunately, many of these reported density estimates have inadequate sample sizes of area or capture and recaptures. Careful reviews have shown that these estimates tend to be biased positively rather than negatively (Foster and Harmsen 2012, Maffei et al. 2011, Tobler and Powell 2013). This means that many of the older publications from before 2010 tended to overestimate densities at an unknown quantity. It also means that previous assessments have been overly optimistic about Jaguar status throughout their range.

Subpopulation status
De la Torre et al. (2017) identified 34 Jaguar subpopulations where there is little likelihood of demographic or genetic exchange, and assessed each against Red List criteria. Overall, 97% met the criteria for Critically Endangered (25 subpopulations) or Endangered (eight subpopulations) (see Figure 3a-e in the Supplementary Material). The large Amazonia subpopulation, estimated to hold 89% of the total species population (57,000 out of 64,000), was assessed as Least Concern.
For further information about this species, see 15953_Panthera_onca.pdf.
A PDF viewer such as Adobe Reader is required.
Current Population Trend:Decreasing
Additional data:
Population severely fragmented:Yes

Habitat and Ecology [top]

Habitat and Ecology:The Jaguar has a stocky, heavy body with short massive limbs associated with reduced cursorial behaviour and dense forest habitat, and robust canines and large head allowing a more powerful bite than other large cats (Seymour 1989, Sunquist and Sunquist 2002). Mean body weight varies by up to 100% across their range, those living further from the equator tend to be larger (Iriarte et al. 1990). This extreme variation in size may reflect variation in the availability of large prey in different habitats: the largest Jaguars occur in open flood plains areas, the Llanos in Venezuela and the Pantanal in Brazil, and take the largest prey, and the smallest Jaguars inhabit the dense forest areas of Central America and Amazonia and take smaller prey (Hoogesteijn and Mondolfi 1996, Oliveira 2002).

Habitat

Jaguar habitat is typically characterized by dense forest cover (mainly primary and secondary forest), the presence of water bodies and a sufficient prey base (Swank and Teer 1989, Sanderson et al. 2002). However, they are found in range of habitats from rainforest to seasonally flooded swamp areas, pampas grassland, thorn scrub woodland, and dry deciduous forest (Nowell and Jackson 1996, Sunquist and Sunquist 2002). Jaguars mainly inhabit tropical lowland forest, followed by dry tropical forest, xeric habitats and finally arable lowland pastures (Sanderson et al. 2002). Although Jaguars have been reported from elevations as high as 3000 m (Brown and Lopez Gonzalez 2001), they typically avoid montane forest, and have not been found in the high plateau of central Mexico or above 2700 m in the Andes (Ceballos et al., 2011). The species is more strongly associated with water in comparison to any of the other Panthera cats (Nowell and Jackson 1996, Sunquist and Sunquist 2002), indicated by their higher densities within tropical moist forests than in tropical montane forest or deciduous forest (Maffei et al. 2011). Even within drier areas they are only found around the main water courses. This characteristic quickly brings them into conflict with expansion of high intensity agriculture, having the same requirements of nearby water sources for irrigation.

Home range
Jaguar home ranges vary in size across their geographic range, often according to the season and availability of resources (e.g. Crawshaw and Quigley 1991, Núñez et al. 2002, Scognamillo et al. 2003, Cavalcanti and Gese 2009). Generally males range further than females.

In the dry tropical deciduous forest of Chamela-Cuixmala Biosphere Reserve, Mexico, female home range size ranged from 25 km² (dry season) to 60 km² (wet season) (95% MCP, radio telemetry; Nunez et al 2002). In the semi-deciduous and seasonally flooded forest of Calakmul Biosphere Reserve, Mexico, male home range size ranged from 33 to 41 km² for males and 32 to 59 km² for females (95% MCP, radio telemetry; Ceballos et al. 2002).

In the tropical broadleaf moist lowland secondary forest of Belize, male home range size ranged from 28 to 40 km² (radio telemetry; Rabinowitz and Nottingham 1986). In the mosaic landscape (secondary broadleaf forest, savannah and agriculture) of Central Belize, male home ranges ranged from 103 to 194 km² in the dry season and 179 to 386 in the wet season, and from 86 to 99 km² for a single female in the dry and wet seasons respectively (95% MCP, GPS collars, Figueroa 2013).

In the llanos of Venezuela, home range size ranged from 93 to 100 km² (males, dry season) and ranged from 51 to 80 km² for females in the wet season and dry season respectively (95% MCP, radio telemetry; Scognamillo et al. 2003).

There are numerous studies of home ranges from the seasonally inundated landscape of the Brazilian Pantanal: females 25 to 38 km² (radio telemetry; Schaller and Crawshaw 1980), females 5km² and males 20 km² for males in the wet season, and 70 and 79km², respectively, in the dry season (95% MCP, radio telemetry; Crawshaw and Quigley 1991), female 38km² and male 67km² (95% fixed kernel, radio telemetry; Azevedo and Murray 2007), 57 to 176 km² (95% MCP, GPS collars; Soisalo and Cavalcanti 2006), and females 34 to 101 km² in the wet season, and 42 to 89 km² in the dry season, and males 79 to 149 km² in the wet season, and 58 to 263 km² in the dry season (90% adaptive kernel estimator, GPS collars, Cavalcanti and Gese (2009).

In the semi-deciduous rainforest of the Brazilian Atlantic forests, male home range size ranged from 87 to 139 km², and from 44 to 133 km² for females (95% MCP, radio telemetry; Crawshaw et al. 2004, Cullen et al. 2005). It can be seen in the above review that the more recent studies using GPS technology show considerably larger range sizes compared to older VHF studies, this is especially indicative for recent GPS studies from areas where previously VHF studies were carried out. The differences are ranging from ~4-6 times larger. It is therefore reasonable to assume that these older ranges are considerably underrepresenting Jaguar home ranges. Densities based on these ranges are therefore equally overestimated.

Diet

Jaguars are opportunistic hunters. Over 85 prey species (wild and livestock/domestic), including mammals, reptiles and birds, have been recorded in their diet across their geographic range (Seymour 1989).

Jaguars take a wide variety of prey species but large-sized ungulates are preferred when available (Nowell and Jackson 1996). The intake of large prey likely helps Jaguars save energy, since it is estimated that 50% of kills are larger prey on which they will feed for up to 4 days (Schaller and Crawshaw 1980, Nunez et al. 2000, Scognamillo et al. 2002). Nevertheless, Jaguar diet is highly variable, depending on prey availability, ease of capture, and a variety of additional factors (Rabinowitz and Nottingham 1986, Seymour 1989). In some areas cattle (Bos sp.) comprise an important item in their diet (Polisar et al. 2003, Palmeira et al. 2008, Cavalcanti and Gese 2010). The decline of wild prey below a minimum threshold increases livestock depredation by big cats (Khorozyan et al. 2015), which in turn may lead to retaliatory killings of felids by livestock owners. High frequency of smaller prey species is frequently reported in Jaguar diet, e.g. armadillo (Rabinowitz and Nottingham 1986, Novack et al. 2005, Foster et al. 2010b). The species has therefore gained a reputation of being able to persist in relatively disturbed areas with incomplete prey assemblages (Rabinowitz and Nottingham 1986). However, most diet studies rely on scat analysis. Palomares et al. (2012) showed that the high majority of these scats are from males. Diet studies are therefore highly biased towards male diets. As males do not contribute anything to the rearing of young, as single individuals, they are able to sustain themselves better at a varied diet of small species. Mothers with cubs will likely require the larger ungulates but this important component of the populations is extremely poorly represented in diet studies of scats.

Reproduction
There are few studies on the reproductive ecology of Jaguars in the wild. Males and females may come together for breeding opportunities at any time of the year (e.g. Cavalcanti and Gese 2009). The female is in oestrus 6-17 day period, and gestation lasts 91-101 days (in captivity), after which the female gives birth to up to four cubs, usually two, which will stay with her for up to 24 months (Mondolfi and Hoogesijn 1982, Seymour 1989, Kitchener 1991, Sunquist and Sunquist 2002). Cubs are fully dependent on their mother’s milk for the first 10-11 weeks, and continue to suckle until 5-6 months old (Sunquist and Sunquist 2002). Cycling could resume 2-3 weeks following lactational anestrus (Soares et al. 2006). However, inter-birth intervals documented in the wild are approximately two years (Quigley and Crawshaw 2002, Carrillo et al. 2009). By 15-18 months, Jaguars travel and hunt independently within their mother’s range, although they may still come together at kill sites (Quigley and Crawshaw 2002, Sunquist and Sunquist 2002). Jaguars are usually independent by the age of 24 months, however the age of dispersal or the social circumstances associated with it are poorly known (Sunquist and Sunquist 2002). Dispersal does not appear to be linked with the onset of sexual maturity, estimated at 24-30 months for females and 36-48 months for males (Sunquist and Sunquist 2002). Few data are available on dispersal distances however telemetry studies in the Brazilian Pantanal suggest that males disperse further than females (Quigley and Crawshaw 1992, Quigley and Crawshaw 2002). Dispersal through human-dominated landscapes may increase the likelihood of conflict with humans, particularly in areas where the habitat is highly fragmented (e.g. Sáenz and Carrillo 2002). The maximum age of last reproduction of a female recorded in the wild is 13 years (Brown and Lopez-Gonzalez 2001).

IUCN Red List Criteria define three generations as the relevant time span for trend assessment. Lion Generation Length (GL) is based on the formulation of Pacifici et al. (2013). Values for age at first reproduction and longevity were agreed to by experts at the 2012 National Action Plan workshop for Jaguars in Brazil, and can be used for generation length calculations as:

GL = Rspan*z +AFR
         Where AFR = Age of first reproduction = 3.5 yrs
Rspan = 15 (the age when 95% of females are no longer reproductive) - AFR = 11.5 yrs

Z = 0.29 (a constant “depending on survivorship and relative fecundity of young vs. old individuals in the population” (IUCN 2014), calculated as the slope of the linear regression between GL and Rspan for 221 mammalian species (Pacifici et al. 2013)
Thus, GL = 11.5*0.29 +3.5 = 6.84 yrs for Jaguars.
Systems:Terrestrial
Generation Length (years):6.84

Use and Trade [top]

Use and Trade: Commercial hunting and trapping of Jaguars for their pelts has declined drastically since the mid-1970s, when anti-fur campaigns and CITES controls progressively shut down international markets (Nowell and Jackson 1996). However, there is still demand for Jaguar paws, teeth and other products, especially in local markets where canines are still considered interesting jewellery. On top of this, Jaguars are starting to be considered a replacement for tiger bone for traditional medicine purposes by the increasing Asian community in Latin America.

Threats [top]

Major Threat(s): Jaguar populations are threatened by habitat loss and fragmentation (Medellín et al. 2002, Paviolo et al. 2008, Foster et al. 2010a, Bernal-Escobar et al. 2015, Medellín et al. 2016, Ceballos et al. in press, Nijhawan et al. in press), killing for trophies/illegal trade in body parts, pro-active or retaliatory killings associated with livestock depredation (Zimmermann et al. 2005, Hoogesteijn and Hoogesteijn 2008, Quigley et al. 2015), and competition for wild meat with human hunters (Jorgenson and Redford 1993, Foster et al. 2016).

Deforestation rates in Latin America are the highest in the world together with tropical Africa (FAO forest update, D’Annunzio et al. 2015). Industrial agriculture, along with subsistence agriculture, is the most significant driver of deforestation in tropical and subtropical countries, accounting for 80% of deforestation from 2000-2010. The current contribution of agriculture to deforestation varies by region, with industrial agriculture being responsible for 30% of deforestation in Africa and Asia, but close to 70% in Latin America. The most significant agricultural drivers of deforestation include soy, palm oil, and cattle ranching, all highly prevalent throughout Latin America (http://globalforestatlas.yale.edu/land-use/industrial-agriculture). The produce is mainly used for export as raw products for developing countries, not to feed local populations. Fragmentation and displacement frequently leads to lowering of densities of Jaguars and prey in leftover forest patches due to easier access and Jaguars feeding on the replaced livestock. Jaguar-livestock conflict is a serious threat to Jaguar survival and reported throughout their range (Hoogesteijn and Hoogesteijn 2011, Quigley et al. 2015, de la Torre et al. 2016).

Latin America is characterized by relatively low population densities with high population growth (http://www.worldometers.info/world-population/). This means that the increased agricultural expansion will likely not be used to feed the expanding population of Latin America. Increased pressure on wildlife as a food source will increase. Even in low population countries like Belize, 75% of the yearly wildlife offtake can be attributed to humans, while Jaguars only account for 25% (Foster et al. 2016). Increases in human population within these thinly populated countries means, increased fragmentation for agriculture, industry and urbanization necessary for sustaining the increased number of people, making the wildlife easier accessible for hunting. The greater need for food and potential increase in wealth for a proportion of the population means increased commercialization and increased prizes for wildlife game species, which are all Jaguar prey species.

Habitat loss is reducing and isolating Jaguar populations range wide (Medellín et al. 2002, Altrichter et al. 2006, Paviolo et al. 2008, Petracca et al. 2014, Medellín et al. 2016, de la Torre et al. 2017). Jaguars have lost about 49% of their historic geographic range (Medellín et al. 2002, Rabinowitz and Zeller 2010, Medellín et al. 2016; current assessment). The white-lipped peccary (Tayassu pecari) an important Jaguar prey (e.g. Foster et al. 2010b), has been extirpated from 21% of its historical range during the past century and changed from NT to VU under the latest IUCN assessment (Altrichter et al. 2012, Keuroghlian et al. 2013). Jaguars have become extinct in El Salvador, Uruguay, and the United States (where there are still periodic individuals present as presumed dispersers from Mexico) (TSJRT 2012, Campbell 2015). There are documented population declines and habitat loss for most of the range countries (Ceballos et al. 2011, Costa et al. 2005, Payán et al. 2013b, Wallace et al. 2013, Espinosa et al. 2016, García-Anleu et al. 2016, González-Maya et al. 2016, Hoogesteijn et al. 2016, Maffei et al. 2016, Mora et al. 2016, Moreno et al. 2016, Payán et al. 2016, Olsoy et al. 2016, Chávez et al. 2016, de Azevedo et al. 2016, Di Bitetti et al. 2016, Díaz-Santos et al. 2016). Connectivity among Jaguar populations is being lost at local and regional scales. For example, the connectivity of Jaguar habitat between Honduras and Guatemala is almost gone; similar losses have been documented across the Chaco, Iguazu and Atlantic Forest, and between Tamaulipas and Veracruz (Haag et al. 2010, Rabinowitz and Zeller 2010, Medellín et al. 2016, Ceballos et al. 2011, Chávez et al. 2016). Isolated populations have fewer individuals and are more prone to local extinctions (Ceballos et al. in press). Many Jaguar populations require connectivity between core sites to survive in the long term and these connectivity corridors are most of the time outside protected areas, and therefore vulnerable to human impacts (Rabinowitz and Zeller 2010, Bernal-Escobar et al. 2015). Even in nominally protected areas, Jaguars often suffer from human impacts such as illegal hunting (Quigley and Crawshaw Jr 1992, Medellín et al. 2002, Sollmann et al. 2008, Ceballos et al. 2011, Payán et al. 2013a, Petracca et al. 2014).

The vulnerability of the Jaguar to persecution is demonstrated by its disappearance by the mid-1800 from Uruguay (Pereira-Garbero and Sappa 2016), El Salvador and by the mid-1900's from the south-western US (Johnson and Van Pelt 2016). Disappearance from these countries catches the current trends in a nutshell. These countries were the first areas to show rapid population increase with large scale land conversion. Retaliatory killing of the remaining exposed Jaguars led to their extinction. These processes are now taking place on a continental scale and therefore there are few areas within Jaguar range that can be considered safe. With limited technological expansion in the region, the main source of income will be industrial agriculture. With every (local) economic crisis, it means that the last Jaguar strongholds will be eroded further. Commercial hunting and trapping of Jaguars for their pelts has declined drastically since the mid-1970s, when anti-fur campaigns and CITES controls progressively shut down international markets (Nowell and Jackson 1996). However, there is still demand for Jaguar paws, teeth and other products, especially in local markets where canines are still considered interesting jewellery. On top of this, Jaguars are starting to be considered a replacement for tiger bone for traditional medicine purposes by the increasing Asian community in Latin America.

Conservation Actions [top]

Conservation Actions: Included on CITES Appendix I. The Jaguar is fully protected at the national level across most of its range, with hunting prohibited in Argentina, Brazil, Colombia, Costa Rica, French Guiana, Honduras, Mexico, Nicaragua, Panama, Paraguay, Suriname, United States, and Venezuela, and hunting restrictions in place in Guatemala and Peru (Nowell and Jackson 1996). Specific conservation plans for the species have been developed in Mexico, Panama, Honduras, and Brazil.

With habitat fragmentation a major threat, and taxonomic research suggesting little significant differences among Jaguar populations, an ambitious program has been launched to conserve a continuous north to south habitat corridor through the species range (Rabinowitz and Zeller 2010).

Addressing livestock management and animals that prey on livestock is a high priority for conservation efforts in many Jaguar range countries due to the impact of retaliatory killing of Jaguars and other predators.

Jaguar Conservation Actions
The following is a list of actions that a variety of Jaguar range countries have put in place to enhance Jaguar conservation.
  1. Respond to reports of livestock depredation, and provide advice and assistance to improve livestock management practices, thereby reducing depredation and associated retaliatory killings of Jaguars;
  2. Understand and address the hunting of Jaguar prey for sport, commercial and subsistence uses, and raise awareness about the laws governing the hunting of wildlife and the need for adopting sustainable hunting practices;
  3. Monitor and safe-guarding Jaguar core populations, Jaguar Conservation Units, or JCUs (see Rabinowitz and Zeller 2010);
  4. Maintain national and regional population connectivity through the identification of corridors for Jaguar movement between JCUs and applying conservation actions in those corridors through the engagement of corridor stakeholders as in the development of a Conservation Action Plan for the Central Belize Corridor (Kay et al. 2015);
  5. Develop national, regional and local monitoring programs for Jaguars and their prey.

Classifications [top]

1. Forest -> 1.4. Forest - Temperate
suitability:Marginal  
1. Forest -> 1.5. Forest - Subtropical/Tropical Dry
suitability:Marginal  
1. Forest -> 1.6. Forest - Subtropical/Tropical Moist Lowland
suitability:Suitable  major importance:Yes
1. Forest -> 1.7. Forest - Subtropical/Tropical Mangrove Vegetation Above High Tide Level
suitability:Suitable  major importance:Yes
1. Forest -> 1.8. Forest - Subtropical/Tropical Swamp
suitability:Suitable  major importance:Yes
1. Forest -> 1.9. Forest - Subtropical/Tropical Moist Montane
suitability:Suitable  major importance:Yes
2. Savanna -> 2.1. Savanna - Dry
suitability:Marginal  
2. Savanna -> 2.2. Savanna - Moist
suitability:Suitable  major importance:Yes
3. Shrubland -> 3.4. Shrubland - Temperate
suitability:Marginal  
3. Shrubland -> 3.5. Shrubland - Subtropical/Tropical Dry
suitability:Suitable  major importance:Yes
3. Shrubland -> 3.6. Shrubland - Subtropical/Tropical Moist
suitability:Suitable  major importance:Yes
3. Shrubland -> 3.7. Shrubland - Subtropical/Tropical High Altitude
suitability:Marginal  
3. Shrubland -> 3.8. Shrubland - Mediterranean-type Shrubby Vegetation
suitability:Marginal  
4. Grassland -> 4.4. Grassland - Temperate
suitability:Marginal  
4. Grassland -> 4.5. Grassland - Subtropical/Tropical Dry
suitability:Suitable  major importance:Yes
4. Grassland -> 4.6. Grassland - Subtropical/Tropical Seasonally Wet/Flooded
suitability:Suitable  major importance:Yes
4. Grassland -> 4.7. Grassland - Subtropical/Tropical High Altitude
suitability:Marginal  
5. Wetlands (inland) -> 5.1. Wetlands (inland) - Permanent Rivers/Streams/Creeks (includes waterfalls)
suitability:Suitable  major importance:Yes
5. Wetlands (inland) -> 5.2. Wetlands (inland) - Seasonal/Intermittent/Irregular Rivers/Streams/Creeks
suitability:Suitable  major importance:Yes
5. Wetlands (inland) -> 5.3. Wetlands (inland) - Shrub Dominated Wetlands
suitability:Suitable  major importance:Yes
5. Wetlands (inland) -> 5.4. Wetlands (inland) - Bogs, Marshes, Swamps, Fens, Peatlands
suitability:Suitable  major importance:Yes
5. Wetlands (inland) -> 5.5. Wetlands (inland) - Permanent Freshwater Lakes (over 8ha)
suitability:Suitable  major importance:No
5. Wetlands (inland) -> 5.6. Wetlands (inland) - Seasonal/Intermittent Freshwater Lakes (over 8ha)
suitability:Suitable  major importance:Yes
5. Wetlands (inland) -> 5.7. Wetlands (inland) - Permanent Freshwater Marshes/Pools (under 8ha)
suitability:Suitable  major importance:Yes
5. Wetlands (inland) -> 5.8. Wetlands (inland) - Seasonal/Intermittent Freshwater Marshes/Pools (under 8ha)
suitability:Suitable  major importance:Yes
14. Artificial/Terrestrial -> 14.1. Artificial/Terrestrial - Arable Land
suitability:Marginal  
14. Artificial/Terrestrial -> 14.2. Artificial/Terrestrial - Pastureland
suitability:Suitable  major importance:No
14. Artificial/Terrestrial -> 14.3. Artificial/Terrestrial - Plantations
suitability:Suitable  major importance:No
14. Artificial/Terrestrial -> 14.6. Artificial/Terrestrial - Subtropical/Tropical Heavily Degraded Former Forest
suitability:Marginal  
1. Land/water protection -> 1.1. Site/area protection
1. Land/water protection -> 1.2. Resource & habitat protection
2. Land/water management -> 2.1. Site/area management
3. Species management -> 3.1. Species management -> 3.1.2. Trade management
3. Species management -> 3.2. Species recovery
4. Education & awareness -> 4.3. Awareness & communications
5. Law & policy -> 5.1. Legislation -> 5.1.2. National level
5. Law & policy -> 5.1. Legislation -> 5.1.3. Sub-national level
5. Law & policy -> 5.2. Policies and regulations
5. Law & policy -> 5.4. Compliance and enforcement -> 5.4.2. National level
5. Law & policy -> 5.4. Compliance and enforcement -> 5.4.3. Sub-national level
6. Livelihood, economic & other incentives -> 6.3. Market forces
6. Livelihood, economic & other incentives -> 6.4. Conservation payments
6. Livelihood, economic & other incentives -> 6.5. Non-monetary values

In-Place Research, Monitoring and Planning
In-Place Land/Water Protection and Management
  Occur in at least one PA:Yes
In-Place Species Management
In-Place Education
  Subject to recent education and awareness programmes:Yes
  Included in international legislation:Yes
  Subject to any international management/trade controls:Yes
1. Residential & commercial development -> 1.1. Housing & urban areas
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Slow, Significant Declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Residential & commercial development -> 1.2. Commercial & industrial areas
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Slow, Significant Declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Residential & commercial development -> 1.3. Tourism & recreation areas
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 2. Species Stresses -> 2.2. Species disturbance

2. Agriculture & aquaculture -> 2.1. Annual & perennial non-timber crops -> 2.1.1. Shifting agriculture
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion

2. Agriculture & aquaculture -> 2.1. Annual & perennial non-timber crops -> 2.1.2. Small-holder farming
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion

2. Agriculture & aquaculture -> 2.1. Annual & perennial non-timber crops -> 2.1.3. Agro-industry farming
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

2. Agriculture & aquaculture -> 2.2. Wood & pulp plantations -> 2.2.1. Small-holder plantations
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

2. Agriculture & aquaculture -> 2.2. Wood & pulp plantations -> 2.2.2. Agro-industry plantations
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

2. Agriculture & aquaculture -> 2.3. Livestock farming & ranching -> 2.3.2. Small-holder grazing, ranching or farming
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

2. Agriculture & aquaculture -> 2.3. Livestock farming & ranching -> 2.3.3. Agro-industry grazing, ranching or farming
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

3. Energy production & mining -> 3.1. Oil & gas drilling
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

3. Energy production & mining -> 3.2. Mining & quarrying
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

4. Transportation & service corridors -> 4.1. Roads & railroads
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation
  • 2. Species Stresses -> 2.1. Species mortality
  • 2. Species Stresses -> 2.2. Species disturbance

4. Transportation & service corridors -> 4.2. Utility & service lines
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation
  • 2. Species Stresses -> 2.1. Species mortality
  • 2. Species Stresses -> 2.2. Species disturbance

5. Biological resource use -> 5.1. Hunting & trapping terrestrial animals -> 5.1.1. Intentional use (species is the target)
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

5. Biological resource use -> 5.1. Hunting & trapping terrestrial animals -> 5.1.2. Unintentional effects (species is not the target)
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

5. Biological resource use -> 5.1. Hunting & trapping terrestrial animals -> 5.1.3. Persecution/control
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 2. Species Stresses -> 2.1. Species mortality

5. Biological resource use -> 5.2. Gathering terrestrial plants -> 5.2.2. Unintentional effects (species is not the target)
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.3. Indirect ecosystem effects

5. Biological resource use -> 5.3. Logging & wood harvesting -> 5.3.1. Intentional use: (subsistence/small scale) [harvest]
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

5. Biological resource use -> 5.3. Logging & wood harvesting -> 5.3.2. Intentional use: (large scale) [harvest]
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

5. Biological resource use -> 5.3. Logging & wood harvesting -> 5.3.3. Unintentional effects: (subsistence/small scale) [harvest]
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

5. Biological resource use -> 5.3. Logging & wood harvesting -> 5.3.4. Unintentional effects: (large scale) [harvest]
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

5. Biological resource use -> 5.3. Logging & wood harvesting -> 5.3.5. Motivation Unknown/Unrecorded
♦ timing:Ongoing    
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

6. Human intrusions & disturbance -> 6.1. Recreational activities
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 2. Species Stresses -> 2.2. Species disturbance

6. Human intrusions & disturbance -> 6.3. Work & other activities
♦ timing:Ongoing ♦ scope:Majority (50-90%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 2. Species Stresses -> 2.2. Species disturbance

7. Natural system modifications -> 7.1. Fire & fire suppression -> 7.1.1. Increase in fire frequency/intensity
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation
  • 2. Species Stresses -> 2.1. Species mortality

7. Natural system modifications -> 7.1. Fire & fire suppression -> 7.1.2. Supression in fire frequency/intensity
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation
  • 2. Species Stresses -> 2.1. Species mortality

7. Natural system modifications -> 7.2. Dams & water management/use -> 7.2.10. Large dams
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Unknown ⇒ Impact score:Unknown 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

7. Natural system modifications -> 7.2. Dams & water management/use -> 7.2.11. Dams (size unknown)
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Unknown ⇒ Impact score:Unknown 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

7. Natural system modifications -> 7.3. Other ecosystem modifications
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Unknown ⇒ Impact score:Unknown 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.1. Domestic & urban waste water -> 9.1.1. Sewage
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.1. Domestic & urban waste water -> 9.1.2. Run-off
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Negligible declines ⇒ Impact score:Low Impact: 4 
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.2. Industrial & military effluents -> 9.2.1. Oil spills
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.2. Industrial & military effluents -> 9.2.2. Seepage from mining
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Causing/Could cause fluctuations ⇒ Impact score:Low Impact: 5 
→ Stresses
  • 1. Ecosystem stresses -> 1.1. Ecosystem conversion
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

9. Pollution -> 9.3. Agricultural & forestry effluents -> 9.3.3. Herbicides and pesticides
♦ timing:Ongoing ♦ scope:Minority (<50%) ♦ severity:Unknown ⇒ Impact score:Unknown 
→ Stresses
  • 1. Ecosystem stresses -> 1.2. Ecosystem degradation

1. Research -> 1.2. Population size, distribution & trends
1. Research -> 1.3. Life history & ecology
1. Research -> 1.5. Threats
1. Research -> 1.6. Actions
2. Conservation Planning -> 2.1. Species Action/Recovery Plan
2. Conservation Planning -> 2.2. Area-based Management Plan
3. Monitoring -> 3.1. Population trends
3. Monitoring -> 3.3. Trade trends
3. Monitoring -> 3.4. Habitat trends

Bibliography [top]

Altrichter, M., Boaglio, G. and Perovic, P. 2006. The decline of jaguars Panthera onca in the Argentine Chaco. Oryx 40: 302-309.

Altrichter, M., Taber, A., Beck, H., Reyna-Hurtado, R., Lizarraga, L., Keuroghlian, A. and Sanderson, E.W. 2012. A report of range-wide declines for a key Neotropical ecosystem architect, the White-lipped Peccary. Oryx 46(1): 87-98.

Azevedo, F.C.C. and Murray, D.L. 2007. Spatial organization and food habits of Jaguars (Panthera onca) in a floodplain forest. Biological Conservation 137: 391-402.

Belize Wildlife Protection Act. 2000. Chapter 220 Revised Edition 2000. Law Revision Commissioner, Belize.

Bernal-Escobar, A., Payán, E. and Cordovez, J.M. 2015. Sex dependent spatially explicit stochastic dispersal modeling as a framework for the study of Jaguar conservation and management in South America. Ecol. Model. 299: 40-50.

Brown, D.E. and Lopez-Gonzales, C.A. 2001. Borderland jaguars: Tigres de la Frontera. University of Utah Press, Salt Lake City, USA.

Campbell, M. 2015. The Factors for the Extinction of Jaguars and Cougars in El Salvador. J Biodivers Biopros Dev 3.

Carrillo, E., Saenz, J. and Fuller, T. 2009. Interbirth interval of a free-ranging Jaguar. Mammalian Biology-Zeitschrift für Säugetierkunde 74(4): 319-320.

Caso, A., Lopez-Gonzalez, C., Payan, E., Eizirik, E., de Oliveira, T., Leite-Pitman, R., Kelly, M. and Valderrama, C. 2008. Panthera onca. Available at: http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T15953A5327466.en. (Accessed: 28 Nov 2015).

Cavalcanti, S.M. and Gese, E.M. 2009. Spatial ecology and social interactions of Jaguars (Panthera onca) in the southern Pantanal, Brazil. Journal of Mammalogy 90(4): 935-945.

Cavalcanti, S.M.C. and Gese, E.M. 2010. Kill rates and predation patterns of jaguars (Panthera onca) preying on livestock and native prey in the southern Pantanal, Brazil. Journal of Mammalogy 91: 722-736.

Ceballos, G., Chávez, C., List, R., Zarza, H. and Medellín, R. 2011. Jaguar Conservation and Managment in México: Case Studies and Perspectives. Alianza Wwf-Telcel / Universidad Nacional Autónoma de México, México.

Ceballos, G., Chávez, C., Rivera, A., Manterola, C. and Wall, B. 2002. Tamáno poblacional y conservación del Jaguar en la reserve de la bioserfa Calakmul, Campeche, México. In: R. A. Medellín, C. Equihua, C. L. B. Chetkiewicz, P. G. Crawshaw, A. Rabinowitz, K. H. Redford, J. G. Robinson, E. W. Sanderson, and A. Taber (eds), El Jaguar en el Nuevo Mileno, pp. 403-417 . Fondo de Cultura Economica, Universidad Nacional Autonoma de Mexico, Wildlife Conservation Society.

Ceballos, G., González-Maya, J.F., Zarza, H. and Chávez, C. In press. Ecology and conservation of Jaguars in Mexico: state of knowledge and future challenges. In: A. Aguirre and R. Sukumar (eds), Tropical Conservation: a view from the south on local and global priorities, Oxford University Press, UK (in press).

Chávez, C., Zarza, H., de la Torre, J.A., Medellín, R.A. and Ceballos, G. 2016. Distribución y estado de conservación del Jaguar en México. In: R.A. Medellín, J.A. de la Torre, H. Zarza, C. Chávez and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de México.

Costa, L.P., Leite, Y.L.R., Mendes, S.L. and Ditchfield, A.D. 2005. Mammal conservation in Brazil. Conservation Biology 19: 672-679.

Crawshaw, P.G. Jr. and Quigley, H.B. 1991. Jaguar spacing, activity and habitat use in a seasonally flooded environment in Brazil. Journal of Zoology, London 223: 357-370.

Crawshaw, P.G. Jr, .Mähler, J.K., Indrusiak, C., Cavalcanti, S.M.C., Leite-Pitman, M., R.P. and Silvius. K.M. 2004. Ecology and Conservation of the Jaguar (Panthera onca) in Iguaçu National Park, Brazil. In: K.M. Silvius, R.E. Bodmer and J. M. V. Fragoso (eds), People in Nature: Wildlife Conservation in South and Central America, pp. 271-285. Columbia University Press, NY.

Cullen, L. Jr, Abreu, K.C., Sana, D. Nava. A.F.D. 2005. Jaguars as landscape detectives for the upper Paraná River corridor, Brazil. Natureza and Conservação 3(1): 43-58.

D’Annunzio, R., Lindquist, E.J. and MacDicken, K.G. 2015. Global forest land-use change from 1990-2010: an update to the a global remote sensing survey of forests.

de Azevedo, F.C.C., Gomes de Oliveira, T., de Paula, C.R., Bueno de Campos, C., Moraes Jr., E.A., Cavalcanti, S.M.C., et al. 2016. Estatus del Jaguar (Panthera onca) en Brasil. In: R.A. Medellín, J.A. de la Torre, H. Zarza, C. Chávez and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, México.

de la Torre, J.A. and Medellín, R.A. 2011. Jaguars Panthera onca in the Greater Lacandona Ecosystem, Chiapas, Mexico: population estimates and future prospects. Oryx 45: 546-553.

de la Torre, J.A., Ceballos, G., Chavez, C., Zarza, H., and Medellín, R.A. 2016. Prioridades y recomendaciones. In: Medellín, R., de la Torre, J.A., Zarza, H., Chavez, C., and Ceballos, G. (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, pp. 495-505. Universidad Nacional Autónoma de México.

de la Torre, J.A., Gonzalez-Maya, J.F., Zarza, H., Ceballos, G., and Medellín, R.A. 2017b. The Jaguar’s spots are darker than they appear: assessing the global Conservation status of the Jaguar Panthera onca. Oryx 51: 1-16.

de la Torre, J.A., Nuñez, J.M. and Medellín, R. 2017a. Habitat availability and connectivity for Jaguars in the southern Mayan Forest: Conservation priorities for a fragmented landscape. Biological Conservation 206: 270-282.

Díaz-Santos, F., Polisar, J., Maffei, L. and Santos-Díaz, F.G. 2016. Avances en el conocimiento de los Jaguares en Nicaragua. In: R.A. Medellín, J.A. de la Torre, C. Chávez, H. Zarza and G. Ceballos (eds), El Jaguar en el Siglo XXI:La Perspectiva Continenta, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de México.

Di Bitetti, M.S., De Angelo, C., Quiroga, V., Altrichter, M., Paviolo, A., Cuyckens, G.A.E. and Perovic, P.G. 2016. Estado de conservación del Jaguar en Argentina. In: R.A. Medellín, J.A. de la Torre, C. Chávez, H. Zarza and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de Mé.

Eizirik, E., Bonatto, S.L., Salzano, F.M., Johnson, F.M., O'Brien, S.J., CrawshawJr., P.G., Vie, J.-C. and Brousset, D.M. 2001. Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae). Molecular Ecology 10: 65-79.

Espinosa, S., Albuja, L., Tirira, D.G., Zapata-Río, G., Araguillin, E., Ultreras, V. and Andrew, N. 2016. Análisis del estado de conservación del Jaguar en el Ecuador. In: R.A. Medellín, J.A. de la Torre, C. Chávez, H. Zarza and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de México.

Figueroa, O. 2013. The ecology and conservation of Jaguars (Panthera onca) in Central Belize: Conservation status, diet, movement patterns and habitat use. PhD Thesis, University of Florida, USA.

Foster, R.J. 2008. The ecology of Jaguars in a human-influenced landscape. PhD Thesis, University of Southampton, UK.

Foster, R.J. and Harmsen, B.J. 2012. A Critique of Density Estimation From Camera-Trap Data. Journal of Wildlife management 76: 224-236.

Foster, R.J., Harmsen, B.J. and Doncaster, C.P. 2010a. Habitat use by sympatric jaguars and pumas across a gradient of human disturbance in Belize. Biotropica 42: 724-731.

Foster, R.J., Harmsen, B.J., Macdonald, D.W., Collins, J., Urbina, Y., Garcia, R. and Doncaster, C.P. 2016. Wild meat: a shared resource amongst people and predators. Oryx 5(1): 63-75.

Foster R.J., Harmsen, B.J., Valdes, B., Pomilla, C. and Doncaster, C.P. 2010b. Food habits of sympatric jaguars and pumas across a gradient of human disturbance. Journal of Zoology 280: 309-318.

García-Anleu, R., McNab, R.B., Polisar, J., Ramos, V.H., Moreira, J., Ponce-Santizo, G., et al. 2016. Estatus del Jaguar en Guatemala, informe del año 2013. In: R.A. Medellín, J.A. de la Torre, C. Chávez, H. Zarza and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de México.

González-Maya, J.F., Bustamante, A., Moreno, R., Salom-Pérez, R., Tavares, R. and Schipper, J. 2016. Estado de conservación y prioridades para el Jaguar en Costa Rica. In: R.A. Medellín, J.A. de la Torre, C. Chávez, H. Zarza and G. Ceballos (eds), El Jaguar en el Siglo XXI:La Perspectiva Continental, pp. Ciudad de México. Fondo de Cultura Económica, Universidad Nacional Autónoma de México.

González-Maya, J., Finegan, B., Schipper, J. and Casanoves, F. 2007. Densidad absoluta y conservación del jaguar y sus presas en la Región Talamanca Pacífico, Costa Rica. The Nature Conservancy, San José, Costa Rica.

Grigione, M., Menke, K., López-González, C., List, R., Banda, A., Carrera, J., Carrera, R., Giordano, A., Morrison, J. and Sternberg, M. 2009. Identifying potential conservation areas for felids in the USA and Mexico: integrating reliable knowledge across an international border. Oryx 43: 78-86.

Haag, T., Santos, A.S., Sana, D.A., Morato, R.G., Cullen Jr, L., Crawshaw Jr, P.G., De Angelo, C., Di Bitetti, M.S., Salzano, F.M. and Eizirik, E. 2010. The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest Jaguars (Panthera onca). Molecular Ecology 19(22): 4906-4921.

Harmsen, B.J., Foster, R.J., Silver, S.C., Ostro, L.E.T. and Doncaster, C.P. 2010. The ecology of Jaguars in the Cockscomb Basin Wildlife Sanctuary, Belize. In: D.W. Macdonald and A. Loveridge (eds), The Biology and Conservation of Wild Felids, Oxford University Press.

Hoogesteijn, A., Hoogesteijn, R., Boede, E.O., Gonzalez-Fernandez, A., Isasi-Catala, E., Yerena, E. and Torres, D. 2016. Situacion de las poblaciones del Jaguar en Venezuela, estudio retrospectivo. In: Medellin, R., Chavez, C., de la Torre, A., Zarza, H. and Ceballos, G. (eds), El Jaguar en el Siglo XXI: La Perspectiva continental, Mexico: Fondo de Cultura Economica.

Hoogesteijn, R. and Hoogesteijn, A. 2008. Conflicts between cattle ranching and large predators in Venezuela: could use of water buffalo facilitate felid conservation? Oryx 42: 132.

Hoogesteijn, R. and Hoogesteijn, A. 2011. Estrategias anti-depredación para fincas ganaderas en Latinoamérica: una guía. Campo Grande: Panthera.

IUCN. 2017. The IUCN Red List of Threatened Species. Version 2017-3. Available at: www.iucnredlist.org. (Accessed: 7 December 2017).

Jedrzejewski, W., Boede, E.O., Abarca, M., Sanchez-Mercado, A., Ferrer-Peris, J.R., Lampo, M., Velasquez, G., Carreno, R., Viloria, A.L., Hoogesteijn, R., Robinson, H.S., Stachowicz, I., Cerda, H., del Mar Weisz, M. Barros, T.R., Rivas, G.A., Borges, G., Molinari, J., Lew, D., Takiff, H., and Schmidt, K. 2016. Predicting carnivore distribution and extirpation rate base on human impacts and productivity factors; assessment of the state of Jaguar in Venezuela. Biological Conservation: 132-142.

Jonhson, T. and Van Pelt, B. 2016. Jaguares en el Borde: Evaluación y Perspectivas Conservació del Jaguar Continental. In: R.A. Medellín, J.A. de la Torre, H. Zarza, C. Chávez and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Mexico.

Jorgenson, J.P. and Redford, K.H. 1993. Humans and big cats as predators in the neotropics. In: Dunstone, N. and Gorman, M. L. (eds), Mammals as Predators, Clarendon Press, Oxford.

Kay, E., Dickerson, A., Urbina, Y., Lizama, D., Correa, E., Cruz, F., Garcia, R., Thompson, R., Williams, L., Quintana, R., Young, J., Andrewin-Bohn, J., Cawich, V., Joseph, R., Humes, S,. Mai, A. 2015. Central Belize Corridor: Conservation Action Plan 2015-2018.

Keuroghlian, A., Desbiez, A., Reyna-Hurtado, R., Altrichter, M., Beck, H., Taber, A. and Fragoso, J.M.V. 2013. Tayassu pecari. The IUCN Red List of Threatened Species 2013. Available at: http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T41778A44051115.en. (Accessed: 25 Nov 2015).

Kitchener, A. 1991. The Natural History of the Wild Cats. A and C Black, London.

Larson, S.E. 1997. Taxonomic re-evaluation of the Jaguar. Zoo Biology 16: 107-120.

Leite, M.R.P., Boulhosa, R.L.P., Galvao, F. and Cullen Jr., L. 2002. Conservacion del jaguar en las areas protegidas del Bosque Atlantico de la costa de Brasil. In: R. A. Medellin, C. B. Chetkiewicz, A. R. Rabinowitz, K. H. Redford, J. G. Robinson, E. W. Sanderson and A. B. Taber (eds), El jaugar en el nuevo milenio, pp. 25-42. Universidad Nacional Autonoma de Mexico / Wildlife Conservation Society, Mexico D. F.

Maffei, L., Cuellar, E. and Noss, A. 2004. One thousand jaguars (Panthera onca) in Bolivia's Chaco? Camera trapping in the Kaa-Iya National Park. Journal of Zoology (London) 262: 295-304.

Maffei, L., Polisar, J., Garcia, R., Moreira, J. and Noss, A.J. 2011. Perspectives from ten years of Jaguar (Panthera onca) camera trapping in Mesoamerica. Mesoamericana 15: 49-59.

Maffei, L., Rumiz, D., Arispe, R., Cuéllar, E. and Noss, A. 2016. Situación del Jaguar en Bolivia. In: eds R.A. Medellín, J.A. de la Torre, H. Zarza, C. Chávez and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, México.

McCain, E.B. and Childs, J.L. 2008. Evidence of Resident Jaguars (Panthera onca) in the Southwestern United States and the Implications for Conservation. Journal of Mammalogy: 1-10.

Medellín, R.A., Chetkiewicz, C., Rabinowitz, A., Redford, K. H., Robin- son, J.G., Sanderson, E. and Taber, A. (eds). 2002. Jaguares en el nuevo milenio: una evaluación de su estado, detección de prioridades y recomendaciones para la conservación de los Jaguares en América. Universidad Nacional Autónoma de México / Wildlife Conservation Society, México.

Medellín, R.A., de la Torre, J.A., Chávez, C., Zarza, H. and Ceballos, G. 2016. El Jaguar en el Siglo XXI: La Perspectica Continental. Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de México.

Ministerio del Ambiente. 2015. Guía de inventario de la fauna silvestre. Ministerio del Ambiente, Dirección General de Evaluación Valoración y Financiamiento del Patrimonio Natural, Lima, Perú.

Mondolfi, E. and Hoogesteijn, R. 1982. Notes on the biology and status of Jaguar in Venzuela. In: S. D. Miller and D. D. Everett (eds), Cats of the World: Biology, Conservation and Management, pp. 85-123. National Wildlife Federation, Washington DC.

Mora, J.M., Polisar, J., Portillo, H. and Franklin, C. 2016. Estado del Jaguar en Honduras. In: R.A. Medellín, J.A. de la Torre, C. Chávez, H. Zarza and G. Ceballos (eds), El Jaguar en el Siglo XXI:La Perspectica Continental , Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de México.

Moreno, R., Bustamante, A., Méndez-Carvajal, P. and Moreno, J. 2016. Jaguares (Panthera onca) en Panamá, Estado Actual y Conservación. In: R.A. Medellín, J.A. de la Torre, C. Chávez, H. Zarza and G. Ceballos (eds), El Jaguar en el Siglo XXI:La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, Ciudad de México.

Nijhawan, S., Cunha de Paula, R. and Beisiegel, B. 2016. Conservation units, priority areas and dispersal corridors for Jaguars in Brazil. In: Paula, R., Cavalcanti, S. and Desbiez, A. (eds), Action plan for Jaguar conservation in Brazil, ICMBio, Brasilia.

Novack, A.J., Main, M.B., Sunquist, M.E. and Labisky, R.F. 2005. Foraging ecology of Jaguar and puma in hunted and non-hunted sites within the Maya Biosphere Reserve, Guatemala. Journal of Zoology 267: 167-178.

Nowell, K. and Jackson, P. 1996. Wild Cats. Status Survey and Conservation Action Plan. IUCN/SSC Cat Specialist Group, Gland, Switzerland and Cambridge, UK.

Núñez, R., Miller, B. and Lindzey, F. 2000. Food habits of Jaguars and pumas in Jalisco, Mexico. J. of Zool. London 252: 373-379.

Núñez, R., Miller, B. and Lindzey, F. 2002. Ecología del Jaguar en la reserva de la bioserfa Chamela-Cuixmala, Jalisco, México. In: R. A. Medellín, C. Equihua, C. L. B. Chetkiewicz, P. G. Crawshaw, A. Rabinowitz, K. H. Redford, J. G. Robinson, E. W. Sanderson, and A. Taber (eds), El Jaguar en el Nuevo Mileno, Fondo de Cultura Economica, Universidad Nacional Autonoma de Mexico, Wildlife Conservation Society.

Olsoy, P.J., Zeller, K.A., Hicke, J.A., Quigley, H.B., Rabinowitz, A.R., and Thornton, D.H. 2016. ). Quantifying the effects of deforestation and fragmentation on a range-wide Conservation plan for Jaguars. Biological Conservation 203: 8-16.

Palmeira, F.B., Crawshaw, P.G., Haddad, C.M., Ferraz, K.M.P., and Verdade, L.M. Cattle depredation by puma (Puma concolor) and Jaguar (Panthera onca) in central-western Brazil. Biological Conservation 141: 118-125.

Palomares, F., Roques, S., Chávez, C., Silveira, L., Keller, C., Sollmann, R. et al. 2012. High proportion of male faeces in Jaguar populations. PLoS ONE 7(12): e52923.

Paviolo, A., De Angelo, C.D., Di Blanco, Y.E. and Di Bitetti, M.S. 2008. Jaguar Panthera onca population decline in the Upper Paraná Atlantic Forest of Argentina and Brazil. Oryx 42: 554-561.

Paviolo, A., De Angelo, C., Ferraz, K., Morato, R.G., Martinez Pardo, J., Srbek-Araujo, A.C., de Mello Beisiegel, B., Lima, F., Sana, D., de Silva, M.X., Valazquez, M.C., Cullen, L., Crawshaw Jr., P., Jorge, M.L., Galetti, P.M., Di Bitetti, M.S., Cunha de Paula, R., Eizirik, E., Mitchell Aida, T., Cruz, P., Perilli, M.L., Souza, A.S., Quiroga, V., Nakano, E., Ramirez Pinto, F. Fernandez, S., Costa, S., Moraes Jr., E., and Azevedo, F. 2016. A biodiversity hotspot losing its top predator: the challenge of Jaguar conservation in the Atlantic Forest of South America. Scientific Rep.

Payan, E. 2008. Jaguars, ocelots and prey ecology across sites with different hunting pressure in Colombian Amazonia. Ph.D. Thesis, University College London and Institue of Zoology, Zoological Society of London.

Payán, E., Carbone, C., Homewood, K., Paemelaere, E., Quigley, H. B. and Durant, S. 2013a. Where will Jaguars roam? the importance of survival in unprotected lands. In: Ruiz-Garcia, M. and Shostell, J. (eds), Molecular Population genetics, Phylogenetics, Evolutionary Biology and Conservation of the Neotropical Carnivores, pp. 603-628. Nova Science, New York.

Payán, E., Castaño-Uribe, C., Gonzalez-Maya, J. F., Valderrama, C., Ruiz-Garcia, M. and Soto, C. 2013b. Distribución y estado de conservación del Jaguar en Colombia. In: Payán, E. and Castaño-Uribe, C (eds), Grandes Felinos de Colombia, pp. 23-36. Panthera Colombia, Fundación Herencia Ambiental Caribe, Conservación Internacional Colombia y Cat Specialist Group UICN/SSC, Bogotá.

Payán, E., Soto, C., Ruiz-García, M., Nijhawan, S., González-Maya, J.F., Valderrama, C. and Castaño-Uribe, C. 2106. Unidades de conservación, conectividad y calidad del hábitat de Jaguar en Colombia. In: R.A. Medellín, J.A. de la Torre, H. Zarza, C. Chávez and G. Ceballos (eds), In El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, México D.F., Mexico.

Pereira-Garbero, R. and Sappa, A. 2016. Historia del Jaguar en Uruguay y la Banda Oriental. In: R.A. Medellín, J.A. de la Torre, H. Zarza, C. Chávez and G. Ceballos (eds), El Jaguar en el Siglo XXI: La Perspectiva Continental, Fondo de Cultura Económica, Universidad Nacional Autónoma de México, México D.F., Mexico.

Petracca, L.S., Hernández-Potosme, S., Obando-Sampson, L., Salom-Pérez, R., Quigley, H. and Robinson, H.S. 2014. Agricultural encroachment and lack of enforcement threaten connectivity of range-wide jaguar (Panthera onca) corridor. Journal for nature conservation 22(5): 436-444.

Petracca, L.S., Ramírez-Bravo, O.E. and Hernández-Santín, L. 2014. Occupancy estimation of Jaguar Panthera onca to assess the value of east-central Mexico as a Jaguar corridor. Oryx 48: 133-140.

Polisar, J., Maxit, I., Scognamillo, D., Farrell, L., Sunquist, M.E., and Eisenberg, J.F. 2003. Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biological conservation. 109 2(297-310).

Quigley, H.B. and Crawshaw Jr, P.G. 1992. A conservation plan for the Jaguar Panthera onca in the Pantanal region of Brazil. Biological Conservation 61: 149-157.

Quigley, H.B. and Crawshaw, P.G. 2002. Reproducción, crecimiento y dispersión del Jaguar en la región de Pantanal, Brasil. In: R.A. Medellín, C. Equihua, C. L.B. Chetkiewizc, P.G. Crawshaw, A. Rabinowitz, K.H. Redford, J.G. Robinson, E.W. Sanderson, and A.B. Taber (eds), El Jaguar en el nuevo milenio, pp. 289-302. Universidad Nacional Autónoma de México y Wildlife Conservation Society, México D.F.

Quigley, H., Hoogesteijn, R., Hoogesteijn, A., Foster, R., Payan, E., Corrales, D., Salom-Perez, R. and Urbina, Y. 2015. Observations and preliminary testing of Jaguar depredation reduction techniques in and between core Jaguar populations. PARKS 21.1: 63-72.

Rabinowitz, A. and Zeller, K.A. 2010. A range-wide model of landscape connectivity and conservation for the Jaguar, Panthera onca. Biological Conservation 143: 939-945.

Rabinowitz, A.R. and Nottingham, B.G. 1986. Ecology and behavior of the Jaguar (Panthera onca) in Belize, Central America. J. of Zool. London 210: 149-159.

Rodríguez-Soto, C., Monroy-Vilchis, O. and Zarco-González, M.M. 2013. Corridors for Jaguar (Panthera onca) in Mexico: conservation strategies. Journal for Nature Conservation 21: 86-101.

Rosas-Rosas, O.C. and Bender, L.C. 2012. Population status of Jaguars (Panthera onca) and pumas (Puma concolor) in northeastern Sonora, Mexico. Acta Zoológica Mexicana 28: 86-101.

Ruiz-Garcia, M. and Payán, E. 2013. Craniometric variation in Jaguar subspecies (Panthera onca) from Colombia. In: Ruiz-Garcia, M. and Shostell, J. (eds), Molecular Population Genetics, Phylogenetics, Evolutionary Biology and Conservation of the Neotropical Carnivores, pp. 465-484. Nova Science, New York.

Ruiz-Garcia, M., Payán, E., Murillo, A. and Alvarez, D. 2006. DNA microsatellite characterisation of the jaguar (Panthera onca) in Colombia. Genes and Genetic Systems 81: 115-127.

Sanderson, E.W., Redford, K.H., Chetkiewicz, C.B., Medellin, R.A., Rabinowitz, A.R., Robinson, J.G. and Taber, A.B. 2002. Planning to save a species: the jaguar as a model. Conservation Biology 16(1): 58.

Schaller, G.B. and Crawshaw, P.G. 1980. Movement patterns of Jaguar. Biotrópica 12: 161-166.

Scognamillo, D., Maxit, I.E., Sunquist, M. and Farrell, L. 2002. Ecología del Jaguar y el problema de la depredación de ganado en un hato de los Llanos venezolanos. In: R.A. Medellín, C. Equihua, C. L.B. Chetkiewizc, P.G. Crawshaw, A. Rabinowitz, K.H. Redford, J.G. Robinson, E.W. Sanderson, y A.B. Taber (ed.), El Jaguar en el nuevo milenio, pp. 139-150. Universidad Nacional Autónoma de México y Wildlife Conservation Society, México DF.

Scognamillo D., Maxit I.E., Sunquist M. and Polisar, J. 2003. Coexistence of Jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan Ilanos. Journal of Zoology, London 259: 269-279.

Seymour, K.L. 1989. Panthera onca. Mammalian Species 340: 1-9.

Silveira L. 2004. Ecologia com parada da onça-pintada (Panthera onca) e onça-parda (Puma concolor) no cerrado e pantanal. Ph.D. Thesis, Universidade de Brasília.

Silver, S.C., Ostro, L.E.T., Marsh, L.K., Maffei, L., Noss, A.J., Kelly, M.J., Wallace, R.B., Gomez, H. and Ayala, G. 2004. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38: 148-154.

Soares, T.N., Telles, M.P.C., Resende, L.V., Silveira, L., Jácomo, A.T.A., Morato, R.G., Diniz-Filho, J.A.F., Eizirik, E. Brondani, R.P.V. and Brondani, C. 2006. Paternity testing and behavioural ecology: A case study of Jaguars (Panthera onca) in Emas National Park, Central Brazil. Genteics and Molecular Biology 29(4): 735-740.

Soisalo, M.K. and Cavalcanti, S.M.C. 2006. Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture-recapture sampling in combination with GPS radio-telemetry. Biological Conservation 129: 487-496.

Sollmann, R., Torres, N.M. and Silveira, L. 2008. Jaguar conservation in Brazil: the role of protected areas. Cat News 2: 15-20.

Sunquist, M. and Sunquist, F. 2002. Wild Cats of the World. University of Chicago Press.

Swank, W.G. and Teer, J.G. 1989. Status of the Jaguar. Oryx 23: 14-21.

Tobler, M.W. and Powell, G.V.N. 2013. Estimating Jaguar densities with camera traps: Problems with current design and recommendations for future studies. Biological Conservation 159: 109-118.

Torres, N.M., Filho, J.A.F.D., De Marco Jr., P., Jacomo, A.T.A. and Silveira, L. 2007. Jaguar distribution and conservation status in Brazil. In: J. Hughes and R. Mercer (eds), Felid Biology and Conservaiton Conference 17-20 September: Absracts, pp. 109. WildCRU, Oxford, UK.

TSJRT. 2012. Recovery outline for the Jaguar (Panthera onca)..

U.S. Fish and Wildlife Service. in press. Recovery plan for the Jaguar, Panthera onca. U.S. Federal Register. (in press).

Wallace, R., Lopez-Strauss, H., Mercado, N. and Porcel, Z. 2013. Diversity, distribution and conservation of Bolivian carnivores. In: Ruiz-Garcia, M. and Shostell, J. (eds), Molecular Population Genetics, Evolutionary Biology and Biological Conservation of the Neotropical Carnivores, pp. 659-709. Nova Science , New York.

Wildlife Conservation Society. 2008. All about jaguars: Threats. New York, USA Available at: http://savethejaguar.com/jag-index/jag-allabout/jag-aboutthreats.

Zimmermann, A., Walpole, M. and Leader-Williams, N. 2005. Cattle ranchers’ attitudes to conflicts with Jaguars in the Pantanal of Brazil. Oryx 39: 1-7.


Citation: Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R. & Harmsen, B. 2017. Panthera onca. In: The IUCN Red List of Threatened Species 2017: e.T15953A50658693. . Downloaded on 18 December 2017.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided