Porites astreoides

Status_ne_offStatus_dd_offStatus_lc_onStatus_nt_offStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
ANIMALIA CNIDARIA ANTHOZOA SCLERACTINIA PORITIDAE

Scientific Name: Porites astreoides
Species Authority: Lamarck 1816
Common Name(s):
English Mustard Hill Coral

Assessment Information [top]

Red List Category & Criteria: Least Concern ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor(s): Aronson, R., Bruckner, A., Moore, J., Precht, B. & E. Weil
Reviewer(s): Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Specific population trends are unknown but population reduction can be inferred from estimated habitat loss (Wilkinson 2004). This species is widespread in the Caribbean and very abundant throughout its range, is found in deeper waters, exhibits high levels of recruitment, is less affected by disease than other Porites species, and therefore is likely to be more resilient to habitat loss and reef degradation because of an assumed large effective population size that is highly connected and/or stable with enhanced genetic variability. Therefore, the estimated habitat loss of 10% from reefs already destroyed within its range is the best inference of population reduction since it may survive in coral reefs already at the critical stage of degradation (Wilkinson 2004). This inference of population reduction over three generation lengths (30 years) does not meet the threshold of a threat category and this species is Least Concern. However, because of predicted threats from climate change and ocean acidification it will be important to reassess this species in 10 years or sooner, particularly if the species is also observed to disappear from reefs currently at the critical stage of reef degradation.

Geographic Range [top]

Range Description:This species occurs in the Caribbean, the Gulf of Mexico, Florida, the Bahamas, Bermuda, and the Eastern Atlantic.

In Brazil, this species is reportedly from Cape sao Roque to Abrolhos, and the oceanic Fernando de Noronha Archipelago and Atol das Rocas (Pires et al. 1992, Echeverria et al. 1997).
Countries:
Native:
Anguilla; Antigua and Barbuda; Bahamas; Barbados; Belize; Benin; Bermuda; Bonaire, Sint Eustatius and Saba (Saba, Sint Eustatius); Brazil; Cameroon; Cape Verde; Cayman Islands; Colombia; Costa Rica; Côte d'Ivoire; Cuba; Curaçao; Dominica; Dominican Republic; Equatorial Guinea; Gabon; Gambia; Ghana; Grenada; Guadeloupe; Guinea; Guinea-Bissau; Guyana; Haiti; Honduras; Jamaica; Liberia; Mauritania; Mexico; Montserrat; Nicaragua; Nigeria; Panama; Saint Barthélemy; Saint Kitts and Nevis; Saint Lucia; Saint Martin (French part); Saint Vincent and the Grenadines; Sao Tomé and Principe; Senegal; Sierra Leone; Sint Maarten (Dutch part); Togo; Trinidad and Tobago; Turks and Caicos Islands; United States; United States Minor Outlying Islands; Venezuela, Bolivarian Republic of; Virgin Islands, British
FAO Marine Fishing Areas:
Native:
Atlantic – eastern central; Atlantic – southwest; Atlantic – western central
Range Map:Click here to open the map viewer and explore range.

Population [top]

Population: This species is extremely abundant, and in some places this may be the numerically dominant coral. These corals are short-lived and generally small sized but exhibit extremely high rates of recruitment.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is more resilient to some of the threats faced by corals and therefore population decline is estimated using the percentage of destroyed reefs only (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage of destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on population decline and generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Population Trend: Increasing

Habitat and Ecology [top]

Habitat and Ecology: This species is found in all reef and near-reef environments. Porites astreoides dominates on the shallow exposed fore reef where other massive species are rare, and it is found on the deep reef and in the back reef; depths range from 0.2-70 m, with the highest abundance from 1-15 m (Goreau and Wells 1967, Lang 2003). Also present in subtidal rocky environments and seagrass beds. They commonly inhabit disturbed reef surfaces (and are often the first to recolonize areas following disturbance), and are also common in areas of high sedimentation and high turbidity.
Systems: Marine

Threats [top]

Major Threat(s): The major threat to this species is disease (white plague), although this is one of the less affected species. Other threats include bleaching and predation by Sparisoma viride (Stoplight Parrotfish) (Frydl 1979, Bruckner and Bruckner 1998, Rotjan et al. 2006). Localized declines may be taking place due to pollution (oil spills) and physical damage from storms.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by a number of localized threats. Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: Listed on CITES Appendix II. In the US, it is present in many MPAs, including Florida Keys National Marine Sanctuary, Biscayne N.P., Dry Tortugas National Park, Buck Island Reef National Monument and Flower Garden Banks National Marine Sanctuary. Also present in Hol Chan Marine Reserve (Belize), Exuma Cays Land and Sea Park (Bahamas). In US waters, it is illegal to harvest corals for commercial purposes. (Aronson, R., Precht, W., Moore, J., Weil, E., and Bruckner, A. pers. comm.)

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Having timely access to national-level trade data for CITES analysis reports would be valuable for monitoring trends this species. The species is targeted by collectors for the aquarium trade and fisheries management is required for the species, e.g., Marine Protected Areas, quotas, size limits, etc. Consideration of the suitability of species for aquaria should also be included as part of fisheries management, and population surveys should be carried out to monitor the effects of harvesting.

Bibliography [top]

Aeby, G.S., Work, T., Coles, S., and Lewis, T. 2006. Coral Disease Across the Hawaiian Archipelago. EOS, Transactions, American Geophysical Union 87(36): suppl.

Aronson, R.B. and Precht, W.F. 2001 b. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25-38.

Bruckner, A.W. and Bruckner, R.J. 1998. Destruction of coral by Sparisoma viride. Coral Reefs 17: 350.

Bruno, J.F., Selig, E.R., Casey, K.S., Page, C.A., Willis, B.L., Harvell, C.D., 2007. Thermal Stress and Coral Cover as Drivers of Coral Disease Outbreaks Sweatman, H., and Melendy, A.M. PLoS Biol 5(6): e124.

Colgan, M.W. 1987. Coral Reef Recovery on Guam (Micronesia) After Catastrophic Predation by Acanthaster Planci. Ecology 68(6): 1592-1605.

Echevarria, C.A., Pires, D.O., Medeiros, M.S. and Castro, C.B. 1997. Cnidarians of the Atol Das Rocas, Brazil. Eight International Coral Reef Symposium 1: 443-446.

Frydl, P. 1979. The effect of parrotfish (Scaridae) on coral in Barbados, W.I. Internationale Revue der Gersmaten Hydobiologie 64: 737-748.

Goreau, T.F. and Wells, J.W. 1967. The shallow-water Scleractinia of Jamaica: Revised list of species and their vertical distribution range. Bulletin of Marine Science 17: 442-453.

Green, E.P. and Bruckner, A.W. 2000. The significance of coral disease epizootiology for coral reef conservation. Biological Conservation 96: 347-361.

Jacobson, D.M. 2006. Fine Scale Temporal and Spatial Dynamics of a Marshall Islands Coral Disease Outbreak: Evidence for Temperature Forcing. EOS, Transactions, American Geophysical Union 87(36): suppl.

Laborel, J. 1969. Les peuplements de madreporaires des cotes tropicales du Bresil. Ann. Univ. Abidjan.

Laborel, J. 1974. West African Reef corals an hypothesis on their origin. Proc 2nd Int Coral Reef Symposium 1: 425-443.

Lang, J.C. (Ed.). 2003. Status of coral reefs in the western Atlantic: results of initial surveys, Atlantic and Gulf Rapid Reef Assessment (AGRRA) program. National Museum of Natural History, Washington DC, USA.

Patterson, K.L., Porter, J.W., Ritchie, K.B., Polson, S.W., Mueller E., Peters, E.C., Santavy, D.L., Smith, G.W. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci 99: 8725-8730.

Pires, D.O., Castro, C.B., Migotto, A.E. and Marques, A.C. 1992. Cnidarios bentonicos do Arquipelago de Fernando de Noronha, Brasil. Bol Mus Nac, Zool., Rio de Janeiro 354: 1-21.

Porter, J.W., Dustan, P., Jaap, W.C., Patterson, K.L., Kosmynin, V., Meier, O.W., Patterson, M.E., and Parsons, M. 2001. Patterns of spread of coral disease in the Florida Keys. Hydrobiologia 460(1-3): 1-24.

Rotjan, R.D., Dimond, J.L., Thornhill, D.J., Leichter, J.J, Helmuth, B., Kemp, D.W., and Lewis, S.M. 2006. Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25(3): 361-368.

Sutherland, K.P., Porter, J.W., and Torres, C. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine ecology progress series 266: 273-302.

Veron, J.E.N. 2000. Corals of the World, Volume 3. Australian Institute of Marine Science, Townsville MC, Australia.

Wallace, C. C. 1999. Staghorn Corals of the World: a revison of the coral genus Acropora. CSIRO, Collingwood.

Weil, E. 2003. The corals and coral reefs of Venezuela. In: Jorge Cortes (ed.), Latin American Coral Reefs, Elseview Science B.V.

Weil, E. 2004. Coral reef diseases in the wider Caribbean. In: E. Rosenberg and Y. Loya (eds), Coral Health and Diseases, pp. 35-68. Springer Verlag, NY.

Weil, E. 2006. Coral, Ocotocoral and sponge diversity in the reefs of the Jaragua National Park, Dominican Republic. Rev. Bio. Trop. 54(2): 423-443.

Wilkinson, C. 2004. Status of coral reefs of the world: 2004. Australian Institute of Marine Science, Townsville, Queensland, Australia.

Willis, B., Page, C and E. Dinsdale. 2004. Coral disease on the Great Barrier Reef. In: E. Rosenber and Y. Loya (eds), Coral Health and Disease, pp. 69-104. Springer-Verlag Berlin Heidelberg.


Citation: Aronson, R., Bruckner, A., Moore, J., Precht, B. & E. Weil 2008. Porites astreoides. In: The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Downloaded on 26 November 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided