Map_thumbnail_large_font

Montastraea cavernosa

Status_ne_offStatus_dd_offStatus_lc_onStatus_nt_offStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
ANIMALIA CNIDARIA ANTHOZOA SCLERACTINIA FAVIIDAE

Scientific Name: Montastraea cavernosa
Species Authority: (Linnaeus 1766)
Common Name/s:
English Great Star Coral

Assessment Information [top]

Red List Category & Criteria: Least Concern ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor/s: Aronson, R., Bruckner, A., Moore, J., Precht, B. & E. Weil
Reviewer/s: Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats. Specific population trends are unknown but population reduction can be inferred from estimated habitat loss (Wilkinson 2004). It is not widespread and is common throughout its range and therefore is likely to be more resilient to habitat loss and reef degradation because of an assumed large effective population size that is highly connected and/or stable with enhanced genetic variability. Therefore, the estimated habitat loss of 10% from reefs already destroyed within its range is the best inference of population reduction since it may survive in coral reefs already at the critical stage of degradation (Wilkinson 2004). This inference of population reduction over three generation lengths (30 years) does not meet the threshold of a threat category and this species is Least Concern. However, because of predicted threats from climate change and ocean acidification it will be important to reassess this species in 10 years or sooner, particularly if the species is also observed to disappear from reefs currently at the critical stage of reef degradation.

Geographic Range [top]

Range Description: This species occurs in the Caribbean, the Gulf of Mexico, Florida, the Bahamas, and Bermuda.

In Brazil, reportedly from Cabedelo (06°58'S to 034°50'W) to north of Esprito Santo, and the oceanic Fernando de Noronha Archipelago and Atol das Rocas (Pires et al. 1992, Echeverria et al. 1997).

This species is also known from the eastern Atlantic.
Countries:
Native:
Anguilla; Antigua and Barbuda; Bahamas; Barbados; Belize; Benin; Bermuda; Brazil; Cameroon; Cape Verde; Cayman Islands; Colombia; Costa Rica; Côte d'Ivoire; Cuba; Dominica; Dominican Republic; Equatorial Guinea; Gabon; Gambia; Ghana; Grenada; Guadeloupe; Guinea; Guinea-Bissau; Haiti; Honduras; Jamaica; Liberia; Mauritania; Mexico; Montserrat; Netherlands Antilles; Nicaragua; Nigeria; Panama; Saint Barthélemy; Saint Kitts and Nevis; Saint Lucia; Saint Martin (French part); Saint Vincent and the Grenadines; Sao Tomé and Principe; Senegal; Sierra Leone; Togo; Trinidad and Tobago; Turks and Caicos Islands; United States; United States Minor Outlying Islands; Venezuela, Bolivarian Republic of; Virgin Islands, British
FAO Marine Fishing Areas:
Native:
Atlantic – eastern central; Atlantic – southwest; Atlantic – western central
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: This species is common and tends to be the more abundant of the Montastraea species in environments with moderate sedimentation.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is more resilient to some of the threats faced by corals and therefore population decline is estimated using the percentage of destroyed reefs only (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage of destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on population decline and generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Population Trend: Stable

Habitat and Ecology [top]

Habitat and Ecology: This species is widely distributed through most reef environments from 0.5-95 m depth (Goreau and Wells 1967), with peak abundance from 10-30 m depth (Szmant et al. 1997). Colonies have been observed to 113 m depth (Reed 1985). Although this coral has a high tolerance for turbid and silty environments, this species is not adapted to eutrophic conditions (Tomascik and Sander 1987).
Systems: Marine

Threats [top]

Major Threat(s): The major threats to this species are disease (black band disease and white plague) and bleaching, although the proportion of colonies affected is generally lower than that observed in the other Montastraea species (Bruckner and Bruckner 1997). Localized threats include bioerosion by sponges and other organisms, other diseases, hurricane damage, and high sedimentation.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: In the US, it is present in many MPAs, including Florida Keys National Marine Sanctuary, Biscayne N.P., Dry Tortugas National Park, Buck Island Reef National Monument and Flower Garden Banks National Marine Sanctuary. Also present in Hol Chan Marine Reserve (Belize), Exuma Cays Land and Sea Park (Bahamas). In US waters, it is illegal to harvest corals for commercial purposes. There is a need for more quantitative information on the status of the populations in deeper habitats.

All corals are listed on CITES Appendix II.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.
Citation: Aronson, R., Bruckner, A., Moore, J., Precht, B. & E. Weil 2008. Montastraea cavernosa. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <www.iucnredlist.org>. Downloaded on 20 April 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please fill in the feedback form so that we can correct or extend the information provided