Map_thumbnail_large_font

Favia albidus

Status_ne_offStatus_dd_offStatus_lc_offStatus_nt_onStatus_vu_offStatus_en_offStatus_cr_offStatus_ew_offStatus_ex_off

Taxonomy [top]

Kingdom Phylum Class Order Family
ANIMALIA CNIDARIA ANTHOZOA SCLERACTINIA FAVIIDAE

Scientific Name: Favia albidus
Species Authority: Veron 2002

Assessment Information [top]

Red List Category & Criteria: Near Threatened ver 3.1
Year Published: 2008
Date Assessed: 2008-01-01
Assessor(s): DeVantier, L., Hodgson, G., Huang, D., Johan, O., Licuanan, A., Obura, D., Sheppard, C., Syahrir, M. & Turak, E.
Reviewer(s): Livingstone, S., Polidoro, B. & Smith, J. (Global Marine Species Assessment)
Justification:
The most important known threat for this species is extensive reduction of coral reef habitat due to a combination of threats, however, this species is also moderately susceptible to bleaching and disease. Specific population trends are unknown but population reduction can be inferred from estimated habitat loss (Wilkinson 2004). It has a restricted range and is uncommon throughout its range. Therefore, the estimated habitat loss of 14% from reefs already destroyed and reefs at critical stage within its range is the best inference of population reduction (Wilkinson 2004). This inference of population reduction over three generation lengths (30 years) does not meet the threshold of a threat category. However, since this population reduction estimate is close to a threatened threshold, and because this species is moderately susceptible to a number of threats, it is likely to be one of the species lost on some reefs currently at the critical stage of degradation and therefore is Near Threatened. Predicted threats from climate change and ocean acidification make it important to reassess this species in 10 years or sooner, particularly if the species is actually observed to disappear from reefs currently at the critical stage of reef degradation.

Geographic Range [top]

Range Description: In the Indo-West Pacific, this species occurs in the Red Sea and the Gulf of Aden. It might occur more widely.

The northern Red Sea from Rabigh to the Sinai Peninsula escaped most of the bleaching and the mortality of the last couple of decades. Destroyed and critical reefs are only 6% of the total (Wilkinson 2004) because of its high latitude and very deep water extending close to shore, and wind induced upwelling. If these factors continue they are likely to contribute to survival of northern Red Sea species into the future. The southern Red Sea did not escape recent bleaching events and the Gulf of Aqaba and the Hurghada regions are affected by numerous direct impacts from coastal development and industry.

Genetics studies have, however, demonstrated the wide degree of differentiation of Red Sea populations from other Indian Ocean and Indo-West Pacific populations, consistent with a low level of gene exchange between the Red Sea and elsewhere. This relative isolation means that recovery following regional scale disturbance that decimates populations in the Red Sea may be compromised. For Red Sea endemics such disturbances would prove catastrophic.
Countries:
Native:
Djibouti; Egypt; Eritrea; Israel; Jordan; Saudi Arabia; Sudan; Yemen
FAO Marine Fishing Areas:
Native:
Indian Ocean – western
Range Map: Click here to open the map viewer and explore range.

Population [top]

Population: This is an uncommon species.

There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is more resilient to some of the threats faced by corals and therefore population decline is estimated using the percentage of destroyed reefs only (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage of destroyed reefs. Reef losses throughout the species' range have been estimated over three generations, two in the past and one projected into the future.

The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. Follow the link below for further details on population decline and generation length estimates.
For further information about this species, see Corals_SupportingDoc.pdf.
A PDF viewer such as Adobe Reader is required.
Population Trend: Decreasing

Habitat and Ecology [top]

Habitat and Ecology: This species occurs in shallow, tropical reef environments. It is found on upper reef slopes. This species is found in the outer reef channel, on the back and foreslopes of the reef, and in lagoons. This species is found from 2-10 m.
Systems: Marine

Threats [top]

Major Threat(s): In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.

Conservation Actions [top]

Conservation Actions: All corals are listed on CITES Appendix II. Parts of the species’ range fall within Marine Protected Areas.

Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.

Citation: DeVantier, L., Hodgson, G., Huang, D., Johan, O., Licuanan, A., Obura, D., Sheppard, C., Syahrir, M. & Turak, E. 2008. Favia albidus. The IUCN Red List of Threatened Species. Version 2014.2. <www.iucnredlist.org>. Downloaded on 25 October 2014.
Disclaimer: To make use of this information, please check the <Terms of Use>.
Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please fill in the feedback form so that we can correct or extend the information provided